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Figure 1: Left is a screenshot from the panorama moderation tool. Right is a zoomed selection of the map illustrating how the high-confidence
links appear by shifting and re-optimizing a capture point. Note how the less likely links appear lighter and wider.

1 Introduction

Google Street View has provided millions of users with the
ability to visually locate businesses around the world using
360°panoramic imagery. Due to the bulky, custom hardware re-
quired to precisely geo-locate the imagery, such as laser scanners
and high precision GPS devices, Street View experiences have been
limited to large areas that can provide cost-effective collections.
This has prevented users from discovering places such as the in-
teriors of small businesses.

Google Business Photos attempts to solve this problem by allowing
photographers with commodity DSLR cameras and fisheye lenses
to capture panoramas of business interiors and publish the data onto
Street View. Photographers collect the data and upload the raw im-
agery to backend storage. From there, the data is stitched to build
360°panoramas. However, without ancillary capture devices, the
images cannot be precisely geo-located. Thus, our method uses
a combination of iterative vision-based pose estimation with user-
guided optimization enabling photographers to build Street View-
like experiences.

2 Iterative Vision-based Pose Estimation
Vision-based pose estimation is a well-studied problem [2004].
In a typical solution, sparse SIFT-like features are extracted from
the 360°panoramas and RANSAC is used to determine the best
epipole, or direction of motion, between each pair of panoramas.
These epipoles provide the fundamental navigation mode in Street
View and are represented by the chevrons that link the imagery. To
precisely geo-locate panoramas, the images are grouped into clus-
ters in which the poses of panoramas and the feature points are fully
reconstructed. The panorama pair containing the largest number of
matching sparse features from RANSAC is chosen as a cluster seed.
Then, the next best matching panorama to the reconstructed feature
points in the cluster is added. This is repeated until all panoramas
containing sparse matches above a threshold can be added, after
which a new cluster is initialized and loosely connected to an ex-
isting cluster using a low-confidence match. Finally, the locations
of the panoramas on the map are determined and the connectivity
graph of the panoramas is built.

3 User-guided Optimization

While the vision-based pose optimization builds a statistically op-
timal solution, the underlying result may still be inaccurate or even
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completely misplaced [1998]. This can arise due to a variety of er-
rors, such as too many false matches from a repeating pattern on a
wall or floor, mirrors in the scene, or too few salient feature points.
User input is then required to guide the remaining components to
build a pose that faithfully reproduces the original geometry.

A map-like display is presented to the user, who is able to manipu-
late the 3 free parameters for each capture point (latitude, longitude,
yaw). In order to aid the user in quickly deciding epipole validity,
a visualization mechanism was added indicating the likelihood of a
particular estimate to be correct. Unfortunately, it was found that
the standard RANSAC score based on inliers did not yield enough
useful information. As an alternative, we pick two feature matches,
compute the relative planar motion between them, and bin the esti-
mated epipoles into discretized yaw values. These histograms typ-
ically fit well to a normal distribution whose standard deviation is
inversely correlated to the certainty of an epipole plus a uniform
distribution to measure the noise.

This visualization provides a useful guide to assist users in pre-
cisely geo-locating each image. However, for simplicity, the user
must also be able to adjust subsets of the pose. For instance, if a
room was misplaced, the user should roughly move the incorrectly
placed data and then re-optimize only the manipulated section. To
limit the data size for JavaScript processing, the statistics computed
for visualization are used to efficiently optimize subsets of the ge-
ometry using gradient descent on the client.

4 Conclusion

The methods and tools presented here have provided photographers
the functionality to push thousands of businesses and other loca-
tions around the world to Street View. For an average collection of
12 panoramas, the vision-pose estimation typically runs in under 4
minutes and the human-based pose correction takes 7 minutes. The
data from this toolchain provides users a novel virtual perspective
on many small and medium sized businesses that has previously
been unseen, especially for locations that are not easily visible from
a driveable street.
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