
Efficient Aggregate Computation over Data Streams

Kanthi Nagaraj, K.V.M. Naidu, Rajeev Rastogi, Scott Satkin †

Bell Laboratories-Research, Bangalore, India
{kanthicn, naidukvm, rastogi}@alcatel-lucent.com

scott@satkin.com

Abstract— Cisco’s NetFlow Collector (NFC) is a powerful ex-
ample of a real-world product that supports multiple aggregate
queries over a continuous stream of IP flow records. NFC
enables a plethora of network management tasks like traffic
demands estimation, application traffic profiling, etc. In this
paper, we investigate two computation sharing techniques for
enabling streaming applications such as NFC to scale to hundreds
of queries. Our first technique instantiates certain intermediate
aggregates which are then used to generate the final answers for
input queries. Our second technique coalesces the filter conditions
of similar queries and uses the coalesced filter to pre-filter stream
data input to these queries. Using these techniques, we propose
a heuristic to compute a good query plan and perform extensive
simulations to show that our heuristic delivers a factor of over
3 performance improvement compared to a naive approach.

I. INTRODUCTION

Our research primarily aims to improve the scalability of

NFC-like applications1so that they can process hundreds of

queries. In an IP network, a flow is essentially a continuous

unidirectional sequence of packets from a source device to

a destination device. NetFlow [2] is the most widely used

IP flow measurement solution today. Each NetFlow record

has a number of attributes that describe the various flow

statistics. Individual attributes can be classified into one of

two categories:

• Group-by attributes: source/destination IP addresses for

the flow, source/destination ports, ToS byte, protocol,

input and output interfaces, etc.

• Measure attributes: number of packets/bytes in the flow,

begin/end timestamp, flow duration, etc.

NFC collects the NetFlow records exported by devices in

the network, and processes user-specified aggregate queries on

the collected NetFlow data. Each aggregate query consists of

(1) a subset of group-by attributes – records with matching

values for attributes in the subset are aggregated together, (2)

an aggregate operator (e.g., SUM, COUNT) on a measure

attribute – the measure attribute values for aggregated records

are combined using the specified aggregate operator, (3) a

boolean filter condition on attributes, and (4) a time period

over which aggregation is to be performed – after each

successive time period, result tuples for the aggregate query

(computed over NetFlow records that arrived during the time

period) are output.

† The work was done while the author was as intern with Bell Labs
Research India

1Our techniques work for any multiple-query streaming applications like
financial tickers, retail transactions, Web log records, sensor node readings,
and call detail records in telecommunications.

Our Contributions. In this paper, we investigate two com-

putation sharing techniques for scalable online processing of

hundreds of aggregate queries on rapid-rate data streams, in

the setting of availability of sufficient memory. The key idea

underlying our techniques is to first identify similarities among

the group-by attributes and filter conditions of queries, and

then use these commonalities as building blocks to generate

the final query answers.

We consider two mechanisms for sharing computation

among user queries. The first mechanism involves instantiating

a few fine-grained intermediate aggregates and then using

these to generate coarse-grained query answers. Our second

mechanism looks to coalesce similar filter conditions into a

single filter, that is then used as a pre-filter to reduce the

amount of data input to the queries. We formulate the problem

in graph theoretic setting and prove that the problem of finding

a minimum-cost aggregate tree is NP-hard, and propose a

randomized heuristic to find good low-cost aggregate trees. We

carry out an extensive empirical study with real-life NetFlow

data sets to gauge the effectiveness of our two computation

sharing mechanisms. Our experimental results indicate that

the query plans generated by our proposed heuristic can boost

system performance by a factor of over 3 compared to a naive

approach which processes each query separately.

II. RELATED WORK

The idea of sharing resources among multiple queries has

been explored before by prior work on multi-query optimiza-

tion [18], [17], but in the context of a conventional DBMS.

Our problem has similarities to the materialized view selection

problems studied in [16] and [12] and cube computation

problem [3]. However unlike these approaches, we are not

looking to compute the entire cube. Also, our stream setting

necessitates that we take into account the cost of computing

intermediate group-bys as well.

More recently, many systems [9], [4], [6], [7], [14], [10],

[5], [13] for processing continuous queries over data streams

have employed resource sharing to achieve better scalability.

Dobra et al. [11] consider the problem of sharing sketches for

approximating the sizes of multiple join queries. Our work

is most closely related to the research of Zhang et al. [20],

which was done in the context of Gigascope [10]. Although

our intermediate aggregates are conceptually similar to the

phantoms of [20], we differ significantly from them in basic

assumptions. We assume availibility of sufficient memory,

which leads to fundamentally different cost models. Unlike

our heuristic, their query plan generation heuristics enumerate

all possible phantoms (exponential in the number of attributes).

Also, our heuristics allows queries with filters.

III. SYSTEM MODEL

We consider a single stream consisting of an infinite se-

quence of tuples, each with group-by attributes a1, . . . , am

and a measure attribute a0 . We are interested in answering

a set of aggregate queries Q = {Q1, . . . , Qn} defined over

the stream of tuples. A typical aggregate query Qi has 3 main

components, listed below:

• Aggregation. This includes (1) the subset of group-by

attributes on which aggregation is performed, and (2)

the aggregation operator that is applied to the measure

attribute values of aggregated tuples.

• Filter. This is essentially a boolean expression (containing

boolean operators ∨ and ∧) over attribute range condi-

tions.

• Period. This is the time interval over which aggregation

is performed.

Without loss of generality, we will assume that the measure

attribute, the aggregation operator and the time period is same

for all the aggregate queries. In the remainder of this paper,

we will use the following notation: A to denote the collection

of grouping attributes Ai for the queries; F to denote set of

filters Fi; N to denote the number of stream tuples that arrive

in time period T ; σFi
to denote the selectivity of the filter

condition Fi; sz(Ai, Fi) to denote the size of the result after

tuples filtered through Fi are aggregated on attributes in Ai
2;

CH(Ai) to denote the cost of hashing a tuple on its group-

by attributes Ai and CF (Fi) to denote the cost of checking

the filter condition Fi for the tuple. Now, the CPU cost for

processing Qi over time interval T is N ·CF (Fi) + N · σFi
·

CH(Ai)
3.

IV. PROCESSING AGGREGATE QUERIES WITHOUT FILTERS

We begin by considering queries without filters. Thus, each

query Qi ∈ Q is simply the group-by attributes Ai on

which tuples are aggregated, and query processing costs are

completely dominated by the hash function computation costs.

To reduce the number of hash operations, our scheme

instantiates a few intermediate aggregates B1, . . . , Bq and then

uses them to compute the various Ais. These intermediate

aggregates share the aggregate computations leading to an

overall reduction in CPU cycles. Before we discuss what

is the best set of intermediate aggregates to instantiate, we

introduce the notion of aggregate trees. Aggregate Trees.

An aggregate tree is a directed tree with (1) a special root

node corresponding to the input stream, and (2) other nodes

corresponding to aggregates. The aggregate for vertex vi is

2Both σFi
and sz(Ai, Fi) can be estimated by maintaining random

samples of past stream tuples and applying sampling-based techniques from
[8]

3The computation cost for query Qi on each stream tuple includes the cost
of applying the filter Fi to the tuple, and then inserting the tuple into the hash
table on attributes Ai if it satisfies Fi.

denoted by A(vi). We use the special symbol ⊤ for A(root)
and require that all nodes in the tree are reachable from root.

A directed edge 〈v1, v2〉 from vertex v1 to vertex v2 can

be present in the tree only if the aggregate for v1 covers

the aggregate for v2 (that is, A(v2) ⊆ A(v1)). Also, we

assume that the root covers every other aggregate (since root

corresponds to input stream). Each edge 〈v1, v2〉 in the tree

has an associated cost given by sz(A(v1)) ·CH(A(v2)), which

corresponds to the real cost of computing aggregates at node

v2. The cost of a tree is simply the sum of the costs of all its

edges, which again corresponds to the real cost of computing

aggregates associated with all nodes in the tree. The plan for

a tree generates aggregates in two phases:

• Real-time streaming phase. Only the child aggregates of

the root node are maintained as tuples are streaming in.

Each streaming tuple is inserted into the hash tables of

each of the root’s children.

• Periodic results output phase. At time intervals of period

T , the root’s children are used to generate the remaining

aggregates in the tree by performing a depth first traversal

of the tree.

In short, an aggregate tree corresponds to a query plan

capable of generating answers for every aggregate contained

in the tree. Thus, our problem of finding a good query plan

(with low hash computation costs) to process the aggregate

queries in A reduces to the following:

Problem Statement. Given an aggregate set A, compute the

minimum-cost aggregate tree T that contains all the aggregates

in A.

Theorem 1: The following decision problem is NP-

hard[15]: Given an aggregate set A and a constant τ , is there

an aggregate tree T with cost at most τ that also contains all

the aggregates in A?

Randomized Heuristic. We now propose a randomized

heuristic that adopts a global approach to compute a minimum-

cost aggregate tree. Consider the graph containing a node

for every possible aggregate (that is, every possible subset of

group-by attributes), and also ⊤ for the input stream. In the

aggregate graph, there is a directed edge from aggregate A

to aggregate B iff A covers B, and the cost of the edge is

sz(A) · CH(B). Now, it is easy to see that computing the

optimal aggregate tree T is nothing but computing a directed

steiner tree (in the graph) that connects the root ⊤ to the set

of aggregates A. But, such a full aggregate graph contains

exponential number of nodes 2m nodes (a node for every

subset of group-by attributes).

Our randomized heuristic (Algorithm 1) circumvents this

exponential problem by employing randomization in succes-

sive iterations to construct a sequence of partial (instead of

full) aggregate graphs. At the end of each iteration, variables

Tbest and S keep track of the current best aggregate tree and

the aggregates contained in it, respectively. In each iteration,

we pick a set random intermediate aggregates R (Steps 4–

8), and construct a partial aggregate graph G on S ∪ R. (G

contains edges from an aggregate to every other aggregate

that it covers.) We then invoke the dual-ascent directed steiner

Algorithm 1 Randomized(A): Randomized heuristic for find-

ing aggregate tree.

1: Initialize S = A ∪ {⊤};
2: for c1 iterations do
3: R = ∅;
4: for c2 iterations do
5: Pick a random number r between 1 and n;
6: Pick r aggregates at random from A and let B be their

union;
7: R = R ∪ {B};
8: end for
9: Let G be the partial aggregate graph on S ∪ R;

10: Tbest = Steiner(G,⊤,A);
11: Set S to the set of aggregates that appear in Tbest;
12: end for
13: Return Tbest;

heuristic of [19] to compute a minimum-cost tree connecting

root ⊤ to aggregates in A in graph G. The user-defined

parameters c1 and c2 determine the number of iterations and

the number of random aggregates selected in each iteration,

respectively.

V. PROCESSING AGGREGATE QUERIES WITH FILTERS

We now turn our attention to aggregate queries with filters.

Each query Qi consists of a set Ai of grouping attributes and

a filter Fi. In the presence of filters, we can reduce computa-

tional overhead by sharing filter evaluation among the various

queries along with sharing of the aggregate computation.

Aggregate Trees. In the presence of filters, each node of the

aggregate tree is a (filter, grouping attributes) pair. The root

node is special with a (filter, attributes) pair equal to (⊤,⊤),
and corresponds to the input stream. Here, ⊤ is a special

symbol that contains all other filters and grouping attributes.

In the aggregate tree, there can be an edge from a vertex v1 to

a vertex v2 only if v1 covers v2, that is, the filter and group-

by attributes of v1 contain the filter and group-by attributes,

respectively, of v2. We assign a cost to each tree edge 〈v1, v2〉
equal to the CPU cost of materializing the result tuples for v2

using the tuples of v1.

Randomized Heuristic. This is very similar to Algorithm 1,

except that the steps 5-7 are replaced by the following:

1) Randomly select a subset of input query nodes from Q.

2) Let v denote the union of (filters and group-by attributes

of) the nodes selected above. Add v to R.

3) For every other node u in S that covers v, we add the

following two additional nodes x and y to R: (a) Node

x with v’s filter, but u’s group-by attributes. (b) Node y

with v’s group-by attributes, but u’s filter.

VI. PERFORMANCE STUDY

In order to gauge the efficacy of the tree-structured query

plan generated by our randomized heuristic, we conducted

experiments comparing our computation sharing approach

with the traditional naive method of processing each query

separately, on real-life NetFlow data sets (obtained from

Abeline repository [1]). In all the cases, we observed that the

plans generated by our randomized algorithm were able to

process the records 2-3 times faster than the naive scheme (in

which each agregation query is performed independently for

each incoming stream tuple). Here, we show the results of two

sets of experiments. Figure 1(a) shows the effect of varying the

aggregation period on throughput(number of queries processed

per second), when using the set of real-world queries from

Cisco’s Flow-Collector 3.0 [2]. Figure 1(b) shows the effect

of varying the number of input queries on the throughput,

when using the set of randomly generated queries. The latter

experiment demonstrates the scalability of our heuristic as

compared to the naive scheme.

 0

 40000

 80000

 120000

 160000

 5 10 15 20T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

e
c
o

n
d

)

Aggregation Period (minutes)

Naive
Random

(a)

 0

 20

 40

 60

 25 50 75 100 125

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

Number of Queries

Naive
Random

(b)

Fig. 1. Comparisons on Cisco FlowCollector queries and Random Queries

REFERENCES

[1] Abilene Observatory Data Collections. http://abilene.
internet2.edu/observatory/data-collections.html.

[2] Cisco CNS NetFlow Collection Engine Installation and
Configuration Guide, 3.0. http://www.cisco.com/unive-
rcd/cc/td/doc/product/rtrmgmt/nfc/nfc 3 0/nfc ug/index.htm.

[3] Sameet Agarwal et al. On the Computation of Multidimensional
Aggregates. In VLDB, 1996.

[4] A. Arasu et al. STREAM: The Stanford Stream Data Manager. In IEEE

Data Engineering Bulletin, 2003.
[5] A. Arasu et al. Resource Sharing in Continuous Sliding-Window

Aggregates. In VLDB, 2004.
[6] Donald Carney et al. Monitoring Streams - A New Class of Data

Management Applications. In VLDB, 2002.
[7] S. Chandrasekaran et al. TelegraphCQ: Continuous Dataflow Processing

for an Uncertain World. In CIDR, 2003.
[8] Moses Charikar et al. Towards Estimation Error Guarantees for Distinct

Values. In PODS, 2000.
[9] Jianjun Chen et al. NiagaraCQ: A Scalable Continuous Query System

for Internet Databases. In SIGMOD, 2000.
[10] C. Cranor et al. Gigascope: A Stream Database for Network Applica-

tions. In SIGMOD, 2003.
[11] A. Dobra et al. Sketch-Based Multi-query Processing over Data Streams.

In EDBT, 2004.
[12] V. Harinarayan et al. Implementing Data Cubes Efficiently. In SIGMOD,

1996.
[13] Sailesh Krishnamurthy et al. On-the-Fly Sharing for Streamed Aggre-

gation. In SIGMOD, 2006.
[14] S. Madden et al. Continuously Adaptive Continuous Queries over Data

Streams. In SIGMOD, 2002.
[15] Kanthi Nagaraj et al. Efficient Aggregate Computation over Data

Streams. Technical Report ITD-06-47360D, Bell Laboratories, Dec
2006.

[16] K.A. Ross et al. Materialized View Maintenance and Integrity Constraint
Checking: Trading Space for Time . In SIGMOD, 1996.

[17] Prasan Roy et al. Efficient and Extensible Algorithms for Multi Query
Optimization. In SIGMOD, 2000.

[18] T Sellis. Multiple Query Optimization. In ACM TODS, 1988.
[19] R. Wong. A Dual Ascent Approach for Steiner Tree Problems on a

Directed Graph. In Mathematical Programming, 1984.
[20] Rui Zhang et al. Multiple Aggregations over Data Streams. In SIGMOD,

2005.

