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Abstract

In this paper, we propose a data-driven approach to leverage repositories of 3D mod-
els for scene understanding. Our ability to relate what we see in an image to a large
collection of 3D models allows us to transfer information from these models, creating a
rich understanding of the scene. We develop a framework for auto-calibrating a camera,
rendering 3D models from the viewpoint an image was taken, and computing a similarity
measure between each 3D model and an input image. We demonstrate this data-driven
approach in the context of geometry estimation and show the ability to find the identities
and poses of object in a scene. Additionally, we present a new dataset with annotated
scene geometry. This data allows us to measure the performance of our algorithm in 3D,
rather than in the image plane.

(a) Input image (b) Predicted surface normals (c) Predicted depth map (d) Predicted object labels

Figure 1: From a single image, we estimate detailed scene geometry and object labels.

1 Introduction

Over the past decade, researchers have demonstrated the effectiveness of data-driven ap-
proaches for complex computer vision tasks. Large datasets such as [32]’s 80 Million Tiny
Images and [7]’s ImageNet have proven to be invaluable sources of information for tasks like
scene recognition and object classification. Pioneering work such as [14, 15, 31] has shown
the power of matching an image with similar ones from a large dataset for “transferring”
information from one image to another.

Recently, large online repositories of 3D data such as Google 3D Warehouse [3] have
emerged. These resources, as well as the advent of low-cost depth cameras [1], have sparked
interest in geometric data-driven algorithms. At the same time, researchers have (re-)started
investigating the feasibility of recovering geometric information, e.g., the layout of a scene [5,
20, 30]. The success of data-driven techniques for tasks based on appearance features, e.g.,
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interpreting an input image by retrieving similar scenes [14, 25, 27, 32], suggests that simi-
lar techniques based on geometric data could be equally effective for 3D scene interpretation
tasks. In fact, the motivation for data-driven techniques is the same for 3D models as for
images: real-world environments are not random; the sizes, shapes, orientations, locations
and co-location of objects are constrained in complicated ways that can be represented given
enough data. In principle, estimating 3D scene structure from data would help constrain
bottom-up vision processes. For example, in Figure 1, one nightstand is fully visible; how-
ever, the second nightstand is almost fully occluded. Although a bottom-up detector would
likely fail to identify the second nightstand since only a few pixels are visible, our method of
finding the best matching 3D model is able to detect these types of occluded objects. This is
not a trivial extension of the image-based techniques. Generalizing data-driven ideas raises
new fundamental technical questions never addressed before in this context: What features
should be used to compare input images and 3D models? Given these features, what mecha-
nism should be used to rank the most similar 3D models to the input scene? Even assuming
that this ranking is correct, how can we transfer information from the 3D models to the input
image? To address these questions, we develop a set of features that can be used to compare
an input image with a 3D model and design a mechanism for finding the best matching 3D
scene using support vector ranking. We show the feasibility of these techniques for transfer-
ring the geometry of objects in indoor scenes from 3D models to an input image.

The graphics community has begun harvesting data from online repositories such as
Google 3D Warehouse in an effort to better understand and model how objects are typically
arranged in homes [8, 9]. At the same time, the vision community has begun using 3D
Warehouse data to learn about the geometric properties and affordances of objects [10].
There has also been work using this data for 3D to 3D matching with laser scans to aid
in classification [22]. However, our work is one of the first to combine this geometric prior
with image features in a framework capable of producing detailed 3D models from an image.
Of course, this is not entirely new, the idea of relating 3D models to 2D projections was a
foundation of earlier vision approaches [6, 11, 26]. The major difference here is our use of
vast repositories of 3D data, which require novel vision and learning approaches.

This work is an important first step towards 3D data-driven techniques, which will con-
tribute to addressing two major problems in image understanding. First, as most geometric
scene understanding systems rely implicitly on sifting through a collection of hypotheses (it-
erative refinement [21], sampling [28], explicit search [12], structured prediction [16, 24]),
matching and ranking mechanisms such as the ones we propose provide a data-driven way
to generate multiple hypotheses which can be used as seeds for further processing. Second,
3D data offers potentially richer information for transfer. For example, one could predict not
only object type and location, but also viewpoint and even occlusions from other objects.

While the problem of indoor geometry estimation has received considerable attention,
it remains challenging with limited performance. Building upon the earlier work in single-
view geometry estimation [20, 30], many researchers have tackled the problem of estimating
the locations of the walls and floors from cluttered indoor images [16, 23, 35]. More recently,
attention has been focused on estimating the locations of objects in these environments [17,
24, 28, 33], and on estimating a scene’s free space [13]. New work [18, 29] aims to recover
free space by localizing cuboids representing object categories and sizes using parametric
models as their prior. In contrast, we recover more detailed object geometries and we use
non-parametric priors that can capture complex interactions between objects.

This brief summary of previous work shows how vibrant this research area is and how
much progress has been made in a short time. The data-driven techniques that we propose
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here should not be viewed as a substitute to any of the above approaches. Perhaps the most
exciting aspect of our approach is that it can be used to augment any of these scene in-
terpretation approaches: upstream, by providing a data-driven way to generate hypotheses;
and downstream by providing richer mechanisms for information transfer. We show this by
building upon the work of [16] and by demonstrating how prior 3D models can be integrated
with this existing approach for room layout estimation to help discover the identity, locations
and orientations of objects from a single image.
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Figure 2: Overview of our approach for matching a 3D model with a monocular image.

2 Scene Understanding via 3D Model Matching

We now describe our framework for comparing 3D models to monocular images. Our ability
to relate what we see in an image to a large collection of 3D models allows us to transfer
the information from these models, creating a rich understanding of the scene. Naturally, we
cannot compare 3D models directly to a 2D image. Thus, we first estimate the intrinsic and
extrinsic parameters of the camera and use this information to render each of the 3D models
from the same view as the image was taken from. We then compute similarity features
between the models and the input image. Lastly, each of the 3D models is ranked based
on how similar its rendering is to the input image using a learned feature weighting. See
Figure 2 for an overview of this process.

2.1 Auto-calibration and Rendering

Given an image, we begin by auto-calibrating the camera by estimating vanishing points
using the approach of [23]. The vanishing points are also used to estimate the orientation
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of the camera with respect to the three Manhattan-world axes in our scene. We run the pre-
trained room layout estimation algorithm of [16] to determine the locations of the walls and
the floor in the image. Lastly, relative to a fixed camera height, we recover the size of the
room and focal length of the camera. For each model, we align the walls of the models with
the estimated wall locations relative to the camera, and independently evaluate each of the
four orthogonal rotations of the 3D model about the vertical axis.

We render hypothesized 3D models of scenes using OpenGL, incorporating our cali-
brated camera parameters (focal length and principal points) with a viewing frustum to create
renderings which align with our input image. This setup allows us to project objects from
our 3D model library into the image plane in a manner which is consistent with the estimated
camera parameters. We use this renderer as a fundamental tool in computing similarity fea-
tures from each 3D model. The following section details this process.

|

(a) p(object) (b) object mask (c) estimated (d) rendered (e) gPb (f) rendered edges

normals normals
Figure 3: Descriptors extracted from an input image (a,c,e), and their corresponding rendered
descriptors from the top-ranked 3D model (b,d,f).

2.2 Feature Computation

]

An important question we address in this paper is, “What features are useful for matching 3D
scenes with monocular images?” This issue is fundamentally complicated by the fact that
we need to compare two objects of a completely different nature: an array of intensity/color
pixels on the one hand, and a set of surfaces with little or no appearance information on the
other hand.

We propose a series of image-based descriptors and their 3D counterparts. We use our
renderer to produce synthetic image descriptors for each 3D model, and compare these to
traditional image-based descriptors.

Object masks: We use the pre-trained geometric context model of [16] to estimate the
likelihood that each of the pixels in an image contains an object (see Figure 3(a)). For each
3D model, we render a simple object mask (i.e., each polygon in the model is rendered black
on a white background) as shown in Figure 3(b). After scaling each of these masks to be
in the range [—1, 1], the normalized dot product between the predicted object locations and
the rendered object masks indicate how well the model matches our image. This similarity
measure is the first feature we use to compare 3D models to an input image.

Surface normals: We use the algorithm of [23] to predict the orientation of each pixel
in an input image. For each 3D model, we render a surface normal image, by simply setting
the red, green and blue color components of each polygon to the x, y and z components of
the polygon’s surface normal. See Figures 3(c) and 3(d) for examples of predicted surface
normals, and rendered surface normals. The normalized dot product of these two descriptors
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quantifies their similarity. We use this value as a feature when scoring each 3D model.

Masked surface normals: We also combine our object masks and surface normal de-
scriptors to create a highly-informative hybrid feature. For this feature, we multiply the
object mask agreement score with the surface normal agreement score for each pixel (both
scaled to be in the range [0, 1]). This combined score aims to count how many pixels in the
image satisfy two constraints: Firstly, objects in the renderings should appear only where
they are predicted to be. Secondly, the surface normals of the 3D models at these locations
should also agree with the predicted surface normals.

Edges: We extract edges from an input image using the globalPb algorithm [4] (thresh-
olded at p(boundary) > 0.5). These edges are compared to Canny edges which are extracted
from rendered surface-normal images of each scene hypothesis (Figures 3(e) and 3(f)). Pairs
of edge images (extracted from the input image and each rendering) are compared using a
modified symmetric Chamfer distance (a € A indicates a is an edge pixel in image A):

1 . . 1 . .
ssl.8) = o L omin (i la—bl. ) + - Tmin (minp—al.<). (1)

acA

To reduce the influence of outlier edges which do not match well, we truncate individual
edge distance penalties (T € {10,25,50,00} pixels). Intuitively, distances computed with
smaller values of T encourage fine-grain matching of edges, while distances computed with
larger thresholds aim to penalize large errors. Each of the distances computed with a different
value of 7 is treated as a separate feature, for a total of four features.

2.3 Hypothesis Scoring with Support Vector Ranking

For a given input image, we render all of the 3D models in our scene library and com-
pute similarity features from the renderings, as described above. We concatenate the object
mask, surface normal, masked surface normal, and edge features into a 7-dimensional fea-
ture vector. A linear weighting of these features is computed to determine a matching score
indicating how similar each 3D model is to the given image. We learn this weight vector
using a max-margin learning framework. Using annotated training data, we can rank how
well each 3D model in our library matches each training image. We use a modified version
of the masked surface normal score presented in Section 2.2 to compute a similarity score
for each pair of images and 3D models. For this scoring, we do not use the predicted surface
normals and object masks, we use renderings of hand-annotated scene geometries which are
treated as ground-truth.

Our goal is to find a weight vector w which can correctly rank pairs of 3D scenes (i.e.:
w'xh > w'x if scene j matches image i better than scene k). We use the difference in
masked surface normal scores as the hinge loss margin S;k. This optimization takes the form
of support vector ranking [19]:

m1§n§||w||2—|—Z§]’»k s.t.: wa’j > wa}<+§]’-k —&i> & >0. 2)
w,

We optimize Equation 2 using stochastic gradient descent. In each iteration, we select
a training image i and a pair of 3D models (j, k). If the current weight vector causes the
pair of 3D models to be incorrectly ranked, or if their difference in scores is less the margin
S;k, we compute a subgradient and update the weight vector. This process is repeated until
convergence.
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3 Experimental Dataset and Ground-truth Annotation

Figure 4: Example images and hand-crafted 3D models from our dataset.

Since the problem of monocular geometry estimation is relatively new, there does not yet
exist an established dataset of images with detailed ground-truth object geometry and sur-
face normals. Thus, we have created a new dataset with annotated scene geometry building
upon the SUN database [34]. Our dataset consists of over 500 images from the categories
“bedroom” and “living room.” For each image, a detailed 3D model was constructed using
Google SketchUp [2]. This software allows users to label vanishing points for camera auto-
calibration and insert existing 3D models of objects from the Internet to generate detailed
models from an image.

We use these hand-crafted 3D models as ground-truth for training our scene ranker, as
well as for evaluating the performance of our geometry estimation algorithm. Figure 4 in-
cludes example 3D models from our dataset. This dataset is in the process of being expanded
to contain additional images and 3D models, and will be made publicly available.'

4 3D Model Library

Figure 5: An example query, and resulting “bedroom’ models from Google 3D Warehouse.

We acquired our 3D indoor scenes through the public search engine of Google 3D Ware-
house [3]. We perform queries for common indoor scenes such as “bedroom” and “living
room,” and download top ranking models. Due to the nature of data harvested from the web,
a large number of scenes are irrelevant for our task. For example, a query for “bedroom”
may return a 3D model for a “4 Bedroom House,” which contains only an architectural
model of the building exterior. Using simple heuristics, we discard models which are too
large or small. Although over 8000 3D models matched our queries, the majority of them
were rejected based on these criteria, leaving approximately 2000 models in our database.
To increase the size of our model database, we include a reflected version of each scene.
Each of these 3D models is then processed to segment individual components, save their
polygonal faces, and identify object categories.

Each component has an associated label, such as “Couch,” “Brown Leather Sofa,” or
“Love Seat.” We automatically cluster the objects into groups by comparing their geometries
with a simple 3D voxelized overlap score. This approach will discover that “Brown Leather
Sofa” and “Love Seat” are synonyms of “Couch.” To ensure accurate labeling of objects, we
created a user-interface for quickly verifying or adjusting the label of each component.

Thttp://cmu.satkin.com/bmvc2012/
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5 Experimental Results

In this section, we present a series of qualitative and quantitative results to demonstrate the
capabilities of our scene matching technique. We partition our dataset and perform 10-fold
cross-validation to report performance on the entire dataset. Figure 6 shows example results
of our algorithm. Displayed from left to right are the input images, estimated surface normals
from the top-ranking matched 3D model and color-coded object overlays.

Note that we are able to recover the labels, locations and orientations of objects, even
from obscure viewpoints. For example, the image in the bottom left corner was captured
from behind a couch; however, we still correctly identify this unique layout of furniture,
recovering the position and orientation of both couches and the coffee table. Moreover, the
general style of objects is also matched (e.g., the headboard of each bed). Additionally,
although appearance-based object detectors typically fail to detect mostly-occluded objects
(such as nightstands), our holistic scene-matching approach is capable of finding these chal-
lenging objects.

Figure 6: Input images, automatically-selected 3D models (surface normals displayed), and
color-coded object labels (yellow=couch, red=table, green=bed).

Figure 7: Failure cases of our scene matching system caused by incorrect room layout and
vanishing point estimation.
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5.1 Surface Normal Accuracy

One way to quantify the quality of our 3D models is to measure how accurately we can pre-
dict the orientation of surfaces in the scene. We score our 3D hypothesis by taking the dot
product of the ground-truth surface normals (from our annotated models) and the orienta-
tions of pixels in our rendered hypothesis, normalized by the number of pixels. This score
represents the percentage of the pixels for which we have correctly identified the orientation.
Since the majority of pixels in most scenes correspond to walls or floor, which are not infor-
mative to the quality of object geometries, we also report the surface normal score for only
those pixels which belong to objects.

A fundamental issue with our approach is our reliance on autocalibration and room layout
estimation. If this stage of the pipeline fails, we will incorrectly estimate the arrangement
of objects in a scene. For example, in Figure 7, the location of the wall behind the bed is
predicted to be too close to the camera. This caused our scene matching process to fit a couch,
which has less depth than a bed. The scene on the right shows a catastrophic failure due to
incorrect vanishing point estimation. To decouple the effects of room layout estimation from
our goal of determining the arrangement of objects, we report results using annotated room
layouts and camera parameters as well as fully automatic results incorporating the room
layout algorithm of [16].

Two annotators created 3D models for a subset of our images in our dataset. By compar-
ing these different versions of the scene geometries, we can evaluate the subjectivity of the
task and annotation process. Table 1 reports three sets of results. The first column measures
how consistent humans are when annotating scene geometries. The next column reports the
results of our algorithm for determining the arrangements of objects in a scene using an-
notated room layouts (camera parameters and wall locations). The last column reports the
results of our fully-automated algorithm which uses the auto-calibration and room layout
estimation techniques of [16].

l “ Human vs. Human [ Annotated layout [ Fully automatic ‘
All pixels 0.88 0.82 0.70
Objects only || 0.81 0.54 0.52
Table 1: Surface normal scores for all pixels, and only pixels belonging to objects.

5.2 Free Space Estimation

We also evaluate how accurately our algorithm can estimate the free space of a room from
an image. Figure 8 shows our ability to recover an architectural floorplan of a room. We
compare our estimated object locations to the ground-truth object locations from annotated
images. For each square inch of the floor that we predict to be occupied, we compare to the
ground-truth occupancy and report precision and recall. We run the pre-trained geometry
estimation algorithm of Gupta et al. [13], and report their performance as a baseline. In ad-
dition, we use the evaluation metric proposed by [18]. Their metric provides a soft-measure
of object overlap. Hypothesized objects which are close to ground-truth object locations, but
do not overlap, are scored based on their distance to the closest ground-truth object.

Table 2 reports our precision and recall scores as well as [18]’s “d precision” and “8 re-
call” scores. Additionally, we report the F-measure (harmonic mean of precision and recall)
which aims to capture our performance with a single value.
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We also compute a similar 3D free space evaluation by voxelizing our scenes and com-
puting how precisely we estimate which voxels are occupied. Table 3 reports the results of
this free space evaluation.

Figure 8: Input images, automatically-selected 3D models, and overhead views (color indi-
cates height: yellow=low, red=high). Results shown use annotated camera parameters.

Human vs. Human | Annotated layout | Fully automatic | Gupta etal. [13] |

precision 0.88 0.59 0.50 0.37
recall 0.74 0.54 0.41 0.21
F-measure 0.80 0.53 0.40 0.25
d precision 0.98 0.80 0.72 0.52
d recall 0.92 0.77 0.63 0.38
6 F-measure || 0.95 0.77 0.65 043

Table 2: 2D floorplan free space evaluation.

Human vs. Human | Annotated layout | Fully automatic | Gupta et al. [13] |

precision 0.73 0.47 0.39 0.12
recall 0.73 0.36 0.28 0.23
F-measure 0.72 0.36 0.27 0.14
S precision 0.96 0.73 0.65 0.32
o recall 0.94 0.66 0.56 0.42
6 F-measure || 0.94 0.68 0.58 0.35

Table 3: 3D voxelized free space evaluation.

6 Conclusion

We have described a novel approach to scene understanding which leverages new large on-
line repositories of 3D models. Our data-driven framework provides a mechanism for trans-
ferring rich information from these models to input images. We demonstrated the utility of
our approach for the task of geometry estimation, and showed that we are able to produce
accurate and detailed 3D models of images. Although this is only a first step in utilizing 3D
data for scene understanding, we have shown that this is a promising paradigm for future
experimentation.
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