
1

Memory-Constrained Aggregate Computation over
Data Streams

K.V.M. Naidu Rajeev Rastogi Scott Satkin Anand Srinivasan
Bell Labs Research, India Yahoo! Labs Bangalore, India CMU, USA Google, India

naidukvm@alcatel-lucent.com rrastogi@yahoo-inc.com scott@satkin.com anandsr@gmail.com

Abstract— In this paper, we study the problem of efficiently
computing multiple aggregation queries over a data stream.
In order to share computation, prior proposals have suggested
instantiating certain intermediate aggregates which are then used
to generate the final answers for input queries. In this work, we
make a number of important contributions aimed at improving
the execution and generation of query plans containing interme-
diate aggregates. These include: (1) a different hashing model,
which has low eviction rates, and also allows us to accurately
estimate the number of evictions, (2) a comprehensive query
execution cost model based on these estimates, (3) an efficient
greedy heuristic for constructing good low-cost query plans, (4)
provably near-optimal and optimal algorithms for allocating the
available memory to aggregates in the query plan when the input
data distribution is Zipf-like and Uniform, respectively, and (5)
a detailed performance study with real-life IP flow data sets,
which show that our multiple aggregates computation techniques
consistently outperform the best-known approach.

I. INTRODUCTION

Computing multiple aggregation queries over a data stream
has applications in many domains: IP network monitoring,
stock trading, analysis of Web logs, fraud detection in telecom
networks and retail transactions, querying sensor node read-
ings, etc. Salient characteristics of these applications include:
(1) very high data arrival rates that make it impractical to
perform multiple passes over the data, (2) hundreds of aggre-
gation queries, and (3) limited CPU and memory resources.

As an example, consider an IP network monitoring system,
which collects IP flow records exported by network routers and
performs a variety of monitoring tasks like estimating traffic
demands between IP endpoints, computing the top hosts in
terms of IP traffic, profiling application traffic, and detecting
network attacks and intrusions. These monitoring applications
may require aggregate measurements over different sets of
flow attributes. For instance, a Denial-of-Service (DoS) attack
detection application will be interested in the number of
packets for every destination IP, destination port aggregated
over 5 minute intervals so that it can identify the destinations
that are receiving an unusually large number of packets. On the
other hand, a traffic engineering application will require the
traffic demand matrix, that is, the number of packets between
every source IP-destination IP pair over 5 minute intervals.

Now, a production service provider network contains hun-
dreds of routers that can easily generate massive amounts
of flow data. In fact, it has been reported that, even with a
high degree of sampling and aggregation [7], the AT&T IP
backbone network alone generates 500 GB of flow data per

day (about ten billion fifty-byte records). Thus, for scalability
in the presence of multiple queries and high-speed streams,
the aggregate computations must be highly optimized both in
terms of the CPU cycles consumed, and memory overheads
that they entail.

Previous work has used the idea of resource sharing
among multiple queries to optimize cube computation [2],
[10], answer continuous queries over data streams [6], [13],
process sliding-window aggregates [3], [12], and optimize
the communication overhead for distributed queries [11]. In
recent work, Zhang et al. [14] proposed an optimization that
allows computation to be shared among queries over an input
stream. Their proposal involves instantiating a few fine-grained
intermediate aggregates (called phantoms in [14]) and then
use these to generate the final query answers. The key idea
here is that the intermediate aggregates will generally be
much smaller than the input stream itself, and so computing
multiple query results from an intermediate aggregate will be
much cheaper than answering the queries directly from the
input stream. For example, our DoS attack detection query
above aggregates packets over attributes {destination IP,
destination port}, while the traffic engineering query needs
packets to be aggregated on attributes {source IP, destination
IP}. In this case, it might be beneficial to maintain an
intermediate aggregate over attributes {source IP, destination
IP, destination port} and then compute the required query
answers from this intermediate aggregate.

An important problem here is selecting the right set of
intermediate aggregates to instantiate. A key challenge is to
allocate the limited memory among the hash tables for these
aggregates so that the total number of hash computations is
minimized. Zhang et al. [14] propose greedy heuristics for
both problems. In this paper, we propose new strategies for
generating and executing computation-efficient query plans
containing intermediate aggregates. Our main contributions
include:
1) Our hashing model uses chaining to support multiple entries
per bucket; as a result, entries do not need to be evicted from
the table every time there is a collision if the hash table has
free capacity. Thus, our hashing model results in much lower
eviction rates (and as a consequence, fewer hash computations)
compared to existing hash models (e.g., [14]) that push out
entries every time there is a collision. (We limit the total
number of entries in a hash table to keep the chains short.)
2) Our query execution cost model is based on accurate
analytical estimates for hash table eviction rates for Zipf-like

and Uniform distributions of the input data. (We validate our
cost model using real-life data sets.) Further, our cost model
is comprehensive and includes all hash computation costs at
every stage of aggregate computation.
3) We show that the problem of finding a minimum-cost query
plan is NP-hard, and propose an efficient greedy heuristic
for constructing good low-cost query plans. Our heuristic is
more efficient than many of the existing approaches (e.g., [14])
that enumerate all possible aggregates and thus have a time
complexity that is exponential in the number of attributes.
4) For a given query plan, we present a fully polynomial-time
approximation scheme (FPTAS)1 for obtaining near-optimal
memory allocation assuming that the input distribution is
Zipf-like. For the special case in which the input distribution
is Uniform, we present a much simpler memory allocation
algorithm that is provably optimal.
5) Finally, we present extensive experimental results with real-
life IP flow data sets which show that our query plans and
memory allocation algorithms provide significant benefits over
the best-known approach for this problem by Zhang et al. [14].

For ease of exposition, proofs of theorems in the paper are
presented in the appendix.

II. RELATED WORK
Our multiple aggregate computation problem is closely

related to the cube computation problem [2], but differs in
that we are not trying to aggregate the input data on all possi-
ble attribute combinations. Our problem also has similarities
to the materialized view selection problem studied in [10].
Harinarayan et al. [10] present greedy algorithms to select
the optimal set of intermediate group-bys to materialize such
that the cost of computing the remaining group-bys in the
cube is minimized. In a stream setting, however, aggregate
computation must be performed in real-time; thus, our problem
formulation also takes into account the cost of computing
intermediate aggregates which is not the case in [10].

More recently, many systems [6], [13], [3], [12] for pro-
cessing continuous queries over data streams have employed
resource sharing to achieve better scalability. For instance, [6],
[13] use variants of predicate indexes for sharing predicate
evaluation in the presence of joins; however, they do not con-
sider aggregate computation. And [3], [12] propose techniques
to share processing of sliding-window aggregates with varying
windows by combining partial aggregates for different time
slices. The papers, however, primarily focus on the handling
of sliding windows, and do not utilize new intermediate
aggregates for reducing the processing overheads. Recently,
Huebsch et al. [11] presented algorithms for optimizing the
communication overhead (instead of computation cost) in their
distributed implementation of multiple aggregate computation.

The work that is closest to ours is that of Zhang et
al. [14], where they propose to maintain additional phantoms
to share computation across multiple aggregate queries in the
Gigascope [7] IP stream processing system. Our intermediate

1A Fully Polynomial-Time Approximation Scheme (FPTAS) is an approx-
imation algorithm which (1) for a given 𝜖 > 0, returns a solution whose
cost is within (1± 𝜖) of the optimal cost, and (2) has a running time that is
polynomial in the input size and 1/𝜖.

aggregates are conceptually similar to phantoms, but our tech-
niques for evaluating and selecting query plans are different.
We highlight these differences below.

First, Gigascope’s lower layer resides on a Network Inter-
face Card (NIC) with limited memory (a few MBs). As a
result, [14] assumes a simple model of hashing that handles a
collision (caused by two entries hashing to the same bucket)
by evicting the existing entry. In contrast, we carry out all
the query processing in a compute server’s main memory.
Our hash table implementation uses chaining to allow multiple
entries per bucket, and only evicts an entry when the hash table
is full. (In Section III-C, we show that chain lengths are short
for typical hash table configurations.) Thus, our eviction policy
leads to much lower hash eviction rates, and very different
query processing cost models.

Second, analytically modeling hash eviction rates is much
more complicated for the eviction policies of [14]. Conse-
quently, to derive eviction rate formulas to plug into the
cost model, the authors rely on empirical approximations, and
restrict themselves to certain low-collision operating regions,
which are characterized by a small number of hash table
entries compared to the hash table size, and may be rare
in practice (especially in memory-constrained environments).
Further, to simplify their analysis, Zhang et al. assume that the
input data distribution is Uniform. In contrast, we are able to
derive clean analytical estimates for the eviction rates for both
Uniform as well as Zipf-like distributions under our hashing
model. (Studies on Web proxy cache traces [4] reveal that the
distribution of Web page requests is Zipf-like. Similarly, we
found the data distribution in real-world IP flow data [1] to be
Zipf-like as well.)

Third, the query processing cost model in [14] only con-
siders the hash computation costs incurred when tuples are
streaming in, while hash operations performed at the end of
each aggregation period (when hash tables are flushed) are
not included in the total query cost that is optimized. The
latter cost is especially significant for larger memory sizes; as
a result, in our experiments, we found that their scheme does
not generate good query plans as memory size is increased.
Our query plans, on the other hand, work well for the entire
range of memory sizes since our cost model includes both
hashing costs.

Fourth, the query plan generation heuristic of [14] enumer-
ates all possible aggregates – this is clearly exponential in the
number of group-by attributes, and thus impractical for large
attribute sets. In contrast, our plan generation heuristic is more
efficient and, at each point in its execution, only considers
aggregates obtained by combining input query (as well as
already chosen) aggregate pairs.

And finally, [14] shows that the memory allocation problem
is essentially unsolvable for trees with depth more than two,
and so resorts to heuristics for space allocation. In contrast, our
space allocation algorithms are provably optimal (for Uniform
distributions) or close to optimal (for Zipf-like distributions).

III. QUERY EVALUATION FRAMEWORK

A. System Model
We consider a single data stream consisting of an infinite

sequence of tuples, each with group-by attributes 𝑎1, . . . , 𝑎𝑚

(e.g., source/destination IP addresses, source/destination
ports), and a measure attribute 𝑎0 (e.g., byte count). We
are interested in answering a set of aggregate queries 𝔸 =
{𝐴1, . . . , 𝐴𝑛} defined over the stream of tuples. Each 𝐴𝑖

specifies the subset of group-by attributes on which aggre-
gation is performed; a result tuple is output for each distinct
𝐴𝑖 value. The measure attribute values are aggregated using
one of the standard SQL aggregation operators (e.g., SUM,
MIN). Similar to [14], we assume that queries are processed
in an epoch by epoch fashion. An epoch is essentially a fixed
time interval over which aggregation is performed; at the end
of each epoch , result tuples for each unique combination
of group-by attribute values and the associated aggregated
measure attribute value are output2. We denote the number
of stream tuples that arrive in an epoch by 𝑛𝑅.

The following example query returns the total traffic in bytes
between every pair of IP addresses aggregated over 15 minute
intervals.

select srcIP, dstIP, SUM(bytes)
from stream
group by srcIP, dstIP
every 15 minutes

Note that the queries in 𝔸 differ only in their grouping
attributes. We denote the number of distinct values observed
for 𝐴𝑖 over one epoch by 𝑔𝐴𝑖

3. Our query processing engine
has a limited amount of memory which is large enough
memory to hold the

∑
𝑖 𝑔𝐴𝑖

result tuples for the aggregate
queries in 𝔸. We will denote the excess memory available
to our engine (for storing auxiliary structures different from
result tuples) by 𝑀 .

B. Naive Query Evaluation Strategy
A straightforward way to support multiple queries is to

simply process each aggregation query independently for each
incoming stream tuple. For each query 𝐴𝑖, we maintain a
separate hash table on its group-by attributes. Processing the
query for a tuple then involves hashing on the attributes in
𝐴𝑖 to locate the hash bucket for the tuple, and then updating
the aggregate statistic for the group-by attribute values. In
the second step, when a tuple with a specific combination
of grouping attribute values is encountered for the first time,
then a new entry for that group is created and initialized in the
bucket. If an entry for the group already exists in the bucket,
then only the aggregate statistic for the group is updated. (We
describe space allocation and collision-handling for our hash
tables in more detail in Section III-C.)

At the end of each epoch, the result tuples for all the
aggregates are output by scanning the non-empty buckets in

2If queries have different time periods, then one option is to set the epoch
duration equal to the gcd of the time periods; alternately, techniques such as
time slicing [12] can also be used to calculate epoch durations.

3The 𝑔𝐴𝑖
’s can be estimated by maintaining random samples of past stream

tuples and applying standard sampling-based techniques such as the one by
Charikar et al. [5].

the hash table for each aggregate query, and writing to an
output file the group-by attribute values and the aggregate
value in every bucket entry. Once all the result tuples are
written, all the hash tables are re-initialized by setting their
buckets to be empty.

The aggregate computation cost is dominated by the CPU
cycles required for hashing incoming stream tuples, finding
and updating the appropriate bucket entry, etc. Thus, the
total computation cost is proportional to the number of hash
operations. So in the rest of the paper, we use hashing costs
as our cost metric.

C. Reducing Computation Using Intermediate Aggregates
Processing each query independently as described above

can easily lead to redundant computation. This, in turn, can
adversely impact the ability of our query engine to handle
high-speed data streams, and cause it to drop some of the
incoming tuples. To prevent such a scenario, it is imperative
that the (hash) computation overhead of our query evaluation
schemes be as low as possible.

To reduce the total number of hash operations performed
during query execution, Zhang et al. [14] introduce the notion
of intermediate aggregates (which they refer to as phantoms
in [14]). The key idea is to instantiate new aggregates 𝐵
for different subsets 𝔸

′ ⊆ 𝔸 of the input queries. The
aggregate 𝐵 for a query subset 𝔸′ contains all the attributes
that appear in 𝔸

′, that is, 𝐵 = ∪𝐴′∈𝔸′𝐴′. Now, it is easy to
see that intermediate aggregate 𝐵 can be used to compute any
aggregate 𝐴′ ∈ 𝔸

′. This is because all the group-by attribute
values for 𝐴′ are present in the result tuples for 𝐵. Thus, since
the intermediate aggregate 𝐵 is typically much smaller than
the raw tuple stream, we can obtain a significant reduction in
the number of hash computations by computing the aggregates
𝐴′ ∈ 𝔸

′ using the result tuples of 𝐵 as input instead of stream
tuples.

More formally, let 𝑔𝐵 denote the size of aggregate 𝐵, i.e.,
𝑔𝐵 is the number of distinct groups observed for the group-
by attributes 𝐵 in the tuple stream over an epoch. Then,
computing aggregate 𝐴′ directly from the raw stream incurs
𝑛𝑅 hash computations, where 𝑛𝑅 is the number of tuples in the
raw stream. On the other hand, further aggregating the result
tuples for an intermediate 𝐵 to compute an aggregate 𝐴′ ∈ 𝔸

′

requires 𝑔𝐵 hash operations. Thus, by ensuring that 𝑔𝐵 ≪ 𝑛𝑅,
we can realize substantial savings in hash computation costs.
There is, of course, the additional cost of computing each 𝐵
from the input stream, which involves 𝑛𝑅 hash computations.
However, if we select the 𝐵s carefully, then this cost can be
amortized across the multiple aggregates 𝐴′ that are computed
from each 𝐵.
Hashing Model in the Presence of Limited Memory. In
the above discussion, we assumed that the hash table for
intermediate aggregate 𝐵 has sufficient space to store the 𝑔𝐵
(aggregated) result tuples for 𝐵 until the end of an epoch
(when they are used to compute the 𝐴′s). However, as men-
tioned earlier in Section III-A, our query engine has a bounded
amount 𝑀 of memory for storing the intermediate hash tables.
In such a memory-constrained scenario, the intermediate hash
table for 𝐵 may not have the required memory for storing all

the 𝑔𝐵 result tuples, and partially aggregated result tuples may
need to be pushed out from 𝐵’s hash table during the epoch.
It is thus possible that more than 𝑔𝐵 result tuples are evicted
from 𝐵’s hash table over one epoch. Below, we describe our
(partially aggregated) tuple eviction policy when hash tables
need to store more tuples than the space allocated to them.

We implement a 𝑏-bucket hash table with capacity to store
𝑏 result tuples as an array of 𝑏 pointers. Each bucket pointer
points to zero, one, or more tuples that hash into the bucket.
We use chaining to link the multiple tuples that hash into
a bucket. Note here that the space consumed by our 𝑏-bucket
hash table is very close to the raw storage required for 𝑏 tuples
since the sizes of tuples are typically much larger than the
pointers themselves. Our hash table implementation has the
advantage that a bucket collision does not lead to an eviction
if the table has fewer than 𝑏 tuples or the incoming tuple is
already in the table. Only if there are 𝑏 tuples already present
in the hash table, and a new tuple that is different from these 𝑏
tuples arrives, does one of the tuples need to be evicted from
the table. There are several policies such as the least-recently-
used (LRU) policy or the least-frequently-used (LFU) policy,
which can be used to evict tuples. In this paper, we use LRU
because it is easy to implement, has very low overhead, and
works well in practice.

One potential concern with chaining is that chains may
become very long, substantially increasing the CPU overhead
for every update. However, it has been shown that if at most 𝑏
tuples are stored in a 𝑏-bucket hash table, then the length of a
chain is at most log(𝑏) with high probability [9]. To verify
this, we conducted experiments to measure the worst-case
and average chain lengths observed for 𝑏 values ranging from
10, 000 to 100, 000 (which are the bucket sizes that we expect
to see in practice). Averaging over 1000 runs, we found that the
worst-case chain length lies between 6 and 8, while the average
chain length (obtained after ignoring the empty buckets) is
always around 1.6. This clearly indicates that the overhead
associated with chaining is extremely small, especially when
compared to the hash computation costs, which dominate the
overall running time.

Our hashing model results in much smaller eviction rates
compared to the hash model in [14]. The hash tables in [14]
do not employ chaining, and so every collision leads to a tuple
being evicted (even if the hash table is not full). In contrast, in
our case, because of chaining, collisions do not cause evictions
when the hash table has fewer than 𝑏 tuples. Further, unlike
[14], we are able to derive clean analytical formulas for the
eviction rates of our hash tables for both Zipf and Uniform
data distributions. ([14] only considers Uniform distribution.)
As we show later in Sections VI and VII, the eviction rate
depends on the amount of memory allocated for a particular
hash table as well as on the statistical distribution satisfied by
the tuples.

D. Query Plans
From the above discussion, it follows that to compute a good

query execution plan (with low computational overhead), we
need to answer the following two questions: (1) What is the
best set of intermediate aggregates 𝐵 to instantiate?, and (2)

How should the available memory 𝑀 be allocated among the
various intermediate aggregates?

Each of the above two questions is difficult in its own
right. But when considered together, the situation becomes
even more tricky. This is because the two questions are
actually interlinked and involve trade-offs. For instance, if we
choose to instantiate more intermediate aggregates, then each
intermediate will get less memory, which will result in higher
eviction rates and neutralize the benefit of having intermediates
in the first place. In general, the choice of intermediates
to materialize will depend on the size of aggregates, data
distribution of aggregate tuples, and the amount of available
memory. We illustrate the various trade-offs using an example.

Example 1: Consider a stream with attributes 𝑎, 𝑏, 𝑐 and 𝑑.
Let 𝔸 consist of the following three aggregates: 𝐴1 = {𝑎, 𝑏},
𝐴2 = {𝑏, 𝑐}, and 𝐴3 = {𝑐, 𝑑}. Figure 1 shows three strategies
for computing these aggregates.

stream

(b)

stream

(a)

stream

(c)

cdab bc

bcab cd

bc cd

abcdabcd

ab bcd

Fig. 1. Possible aggregate processing strategies.

Strategy 1. The naive strategy is to compute each aggregate
𝐴𝑖 is directly from the stream (see Figure 1(a)). In this case,
the number of hash operations is simply 3 ⋅ 𝑛𝑅.

Strategy 2. As shown in Figure 1(b), this strategy instantiates
a new aggregate 𝐵1 = {𝑎, 𝑏, 𝑐, 𝑑} that contains all the
aggregates 𝐴𝑖. In this case, the entire memory 𝑀 is allocated
to 𝐵1, and so 𝐵1’s hash table has 𝑏1 = 𝑀 buckets. (For
simplicity, in this example, we assume that the size of each
hash table entry is 1 unit.) If 𝑓1 is the eviction rate of 𝐵1,
then the total number of tuples pushed out from 𝐵1’s hash
table is 𝑏1+𝑓1 ⋅𝑛𝑅. Of these, 𝑓1 ⋅𝑛𝑅 tuples are evicted during
the epoch and 𝑏1 additional tuples are pushed out at the end
of the epoch. Note that 𝑏1 + 𝑓1 ⋅ 𝑛𝑅 ≥ 𝑔𝐵1

, and further if
𝑏1 = 𝑔𝐵1

, then 𝑓1 = 0. Thus, with Strategy 2, 𝑛𝑅 stream
tuples are inserted into the hash table for 𝐵1, and 𝑏1+ 𝑓1 ⋅𝑛𝑅

of 𝐵1’s tuples are inserted into the hash tables for 𝐴1, 𝐴2,
and 𝐴3. Thus, the total number of hash operations is given by
𝑛𝑅 + 3 ⋅ (𝑏1 + 𝑓1 ⋅ 𝑛𝑅).

Strategy 3. This strategy takes the idea in Strategy 2 a bit
further and instantiates one more aggregate 𝐵2 = {𝑏, 𝑐, 𝑑} in
addition to 𝐵1 (see Figure 1(c)). Thus, the available memory
𝑀 is now split between the two intermediates. Let 𝐵1’s
and 𝐵2’s hash tables contain 𝑏′1 and 𝑏′2 buckets, respectively.
Further, let 𝑓 ′1 and 𝑓 ′2 be the eviction rates of 𝐵1 and
𝐵2, respectively. (Note that 𝑏′1 ≤ 𝑏1, which implies that
𝑓 ′1 ≥ 𝑓1.) Now, the number of tuples pushed out from 𝐵1’s
hash table into 𝐴1 and 𝐵2’s hash tables is 𝑏′1 + 𝑓 ′1 ⋅ 𝑛𝑅,

and 𝐵2 in turn pushes out 𝑏′2 + 𝑓 ′2 ⋅ (𝑏′1 + 𝑓 ′1 ⋅ 𝑛𝑅) of these
tuples. Thus, the total number of hash operations is equal to
𝑛𝑅 + 2 ⋅ (𝑏′1 + 𝑓 ′1 ⋅ 𝑛𝑅) + 2 ⋅ (𝑏′2 + 𝑓 ′2 ⋅ 𝑏′1 + 𝑓 ′2 ⋅ 𝑓 ′1 ⋅ 𝑛𝑅).

It is easy to see that the best solution will vary depending on
the relationship between the values of 𝑛𝑅, 𝑔𝐵1

, 𝑔𝐵2
, and 𝑀 .

In particular, if 𝑛𝑅 ≫ 𝑔𝐵1
and 𝑀 is reasonably large so that

𝑓1 is low, then 𝑏1 + 𝑓1 ⋅ 𝑛𝑅 ≈ 𝑔𝐵1
and Strategy 2 will result

in much fewer hash computations compared to Strategy 1. On
the other hand, if 𝑛𝑅 ≈ 𝑔𝐵1

or 𝑀 is small causing 𝑓1 to
be high, then 𝑏1 + 𝑓1 ⋅ 𝑛𝑅 ≈ 𝑛𝑅 and Strategy 1 will likely
be computationally more efficient that Strategy 2. Finally, if
𝑛𝑅 ≫ 𝑔𝐵1

≫ 𝑔𝐵2
and 𝑀 is reasonably large so that 𝑓 ′1 and

𝑓 ′2 are both low, then 𝑏′2 + 𝑓 ′2 ⋅ (⋅ ⋅ ⋅) ≈ 𝑔𝐵2
and Strategy 3

turns out to be the best solution.
Observe that each of the query plans considered above is

essentially a directed tree with the root node corresponding to
the stream, and other nodes corresponding to intermediate and
input aggregates. A directed edge in the tree indicates that the
destination aggregate is computed from the source aggregate.
We next formalize this using the notion of aggregate trees.
Aggregate Tree. An aggregate tree 𝑇 is a directed tree with
(1) a special root node corresponding to the input stream, and
(2) other nodes corresponding to aggregates. We use 𝑁𝑖 to
denote a node in the tree, and 𝑇𝑖 for the subtree rooted at
𝑁𝑖. Without loss of generality, we assume that 𝑁0 is the root
node of 𝑇 . A directed edge ⟨𝑁1, 𝑁2⟩ from node 𝑁1 to node
𝑁2 implies that the aggregate for 𝑁1 is used to generate the
aggregate for 𝑁2. We use 𝑏𝑖 to denote the space (in terms of
hash buckets) allocated to 𝑁𝑖 and 𝑠𝑖 to denote the size (in
bytes) of a single hash table entry at node 𝑁𝑖, which includes
the tuple, the measure attribute value, and the pointer to the
next entry. It follows that the total memory required at node
𝑁𝑖 for 𝑏𝑖 buckets is 𝑏𝑖𝑠𝑖. Let 𝑔𝑖 denote the number of distinct
groups in the aggregate at 𝑁𝑖. Then, 𝑔𝑖 can be viewed as the
maximum storage requirement at 𝑁𝑖, while 𝑏𝑖 ≤ 𝑔𝑖 is the
actual assignment.

Note that each node that corresponds to an aggregate query
from 𝔸 is given its complete memory requirement. Otherwise,
it can lead to incorrect output or loss of data, neither of
which is desirable. It is easy to incorporate these requirements
since they can be given full allocations separately in the
beginning; the goal then would be to distribute the remaining
available memory 𝑀 among the other nodes (corresponding
to intermediate aggregates) of the tree. Thus, we will require
the 𝑏𝑖’s to satisfy the relation

∑
𝑖 𝑏𝑖𝑠𝑖 ≤𝑀 , with the implicit

understanding that we only consider the intermediate nodes
𝑁𝑖 for allocation of memory 𝑀 and ignore the query nodes.

Intuitively, an aggregate tree corresponds to a query plan
capable of generating answers for every aggregate contained
in the tree. The plan for a tree specifies the actions performed
during the epoch as well as at the end of the epoch to generate
aggregates.
∙During the epoch. As new stream tuples arrive at the root
node, they are inserted into the hash tables of each of the root’s
children. It is possible that an insertion may result in another
(partially aggregated) tuple getting evicted in accordance with
the LRU policy. Every tuple that is evicted from a node 𝑁𝑖

is inserted into the hash tables of the child nodes of 𝑁𝑖. We

denote the eviction rate for node 𝑁𝑖 by 𝑓𝑖.
∙End of the epoch. At the end of every epoch, all the tuples
are flushed out from each node. This flushing of tuples is done
in a top-down fashion, starting with the children of the root
node down to the leaves. Thus, for a node 𝑁𝑖, once the tuples
from its parent have been flushed out, all the tuples in 𝑁𝑖’s
hash table are evicted and aggregated into the hash tables of
each of its children.

IV. PROBLEM FORMULATION

In this section, we present our query execution cost model
and then formally define the problem that we address in this
paper.

We first estimate the hash computation costs incurred by
aggregate tree 𝑇 . Let 𝑝𝑖 denote the index of the parent node
of 𝑁𝑖, i.e., 𝑁𝑝𝑖

is 𝑁𝑖’s parent. Let 𝑜𝑢𝑡𝑖 denote the size of the
stream coming out of node 𝑁𝑖. Observe that for the root node
𝑜𝑢𝑡0 = 𝑛𝑅. For the remaining (non-root) nodes 𝑁𝑖, 𝑜𝑢𝑡𝑖 can
be written in terms of 𝑜𝑢𝑡𝑝𝑖

and 𝑏𝑖 as follows.

𝑜𝑢𝑡𝑖 = 𝑏𝑖 + 𝑓𝑖 ⋅ 𝑜𝑢𝑡𝑝𝑖
(1)

where 𝑓𝑖 denotes the fraction of incoming tuples that are
evicted out of 𝑁𝑖 during an epoch. The first term on the RHS
of Equation (1) is simply the number of distinct tuples stored
in the hash table at 𝑁𝑖; these are the tuples that will be evicted
at the end of the epoch. The second term corresponds to the
tuples evicted out of the node during the epoch due to the
limited memory allocated at the node, i.e., because 𝑏𝑖 < 𝑔𝑖.
This term is determined by two factors: the input at the node,
which is 𝑜𝑢𝑡𝑝𝑖

, and 𝑓𝑖, which depends on the values of 𝑏𝑖,
𝑔𝑖, and the input distribution. (We show how to compute 𝑓𝑖
for Zipf and Uniform distributions in Sections VI and VII,
respectively.) Thus, the value of 𝑜𝑢𝑡𝑖, which is the number of
tuples evicted from 𝑁𝑖, is given by the sum of the number of
tuples evicted during the epoch and at the end of the epoch.

Note that the value of 𝑜𝑢𝑡𝑖 cannot be less than 𝑔𝑖 since that
is the number of distinct groups observed at 𝑁𝑖. Further, note
that for 𝑏𝑖 = 𝑔𝑖, there is enough memory for all the tuples
and hence, no tuple will be evicted during the epoch, i.e., 𝑓𝑖
is 0. Then, Equation (1) implies that 𝑜𝑢𝑡𝑖 = 𝑔𝑖. Thus, the
minimum value of 𝑜𝑢𝑡𝑖 occurs at 𝑏𝑖 = 𝑔𝑖. In other words, if
there is sufficient memory available, then every node 𝑁𝑖 will
be given its maximum requirement 𝑔𝑖𝑠𝑖.

Let ℎ𝑖 denote the sum of the hashing costs at the child
nodes of 𝑁𝑖, i.e., ℎ𝑖 is the sum of the costs of inserting a
tuple evicted from 𝑁𝑖 into the hash tables of 𝑁𝑖’s children.
Then, the total cost of tree 𝑇 is given by the following.

𝐶(𝑇) =
∑

𝑖

𝑜𝑢𝑡𝑖ℎ𝑖 (2)

Thus, the cost of aggregate tree 𝑇 reflects the total computa-
tion cost of producing all the aggregates in the tree. Hence, our
problem of finding a good query plan reduces to the following.

Problem Statement. Given a set of aggregates 𝔸, compute the
minimum-cost aggregate tree 𝑇 that contains all the aggregates
in 𝔸, subject to the constraint that the sum of the memory

allocations given to each (intermediate) node in the tree is at
most 𝑀 .

It turns out that this problem is NP-hard even when there
are no constraints on the total available memory. The reduction
is from the subset-product problem, which is known to be
NP-hard [8]. We omit this proof due to lack of space. Given
this result, the NP-hardness of our problem easily follows
given that we can assign a sufficiently-large value to 𝑀
(= 𝑛𝑅∣𝔸∣2∣𝔸∣) such that any aggregate tree is feasible, thus
reducing it to the case where there are no memory constraints.

Note that, unlike [14] which looks to optimize only during-
epoch costs, our cost model includes both during-epoch and
end-of-epoch costs. During-epoch costs are more prominent
when the available memory is small, but as the memory size
increases, end-of-epoch costs start becoming more dominant.
Thus, since our approach optimizes both costs simultaneously,
our aggregate tree computation algorithms work well for a
broad range of memory sizes.

V. AGGREGATE TREE CONSTRUCTION

In this section, we present an efficient greedy heuristic for
computing a good aggregate tree. Algorithm 1 contains the
pseudo-code for this greedy heuristic. The heuristic applies a
series of local modifications to the tree: at each step, it selects
the modification that leads to the biggest cost reduction. In
particular, it considers the following two types of local tree
modifications in each iteration: (1) Addition of a new aggre-
gate 𝐶 obtained as a result of merging sibling aggregates 𝐴,𝐵
(Steps 4–14), and (2) Deletion of an aggregate 𝐴 (Steps 15–
23). For each modification, we compute the best possible
memory allocation and estimate the minimum cost possible
using that tree. In each iteration, the local modification that
results in the biggest cost decrease is applied to the tree. The
heuristic terminates when the cost improvement due to the best
local modification falls below a (small) constant threshold 𝜖.

Now, let us look at the rationale behind the two local
modifications. Let 𝐴,𝐵 be a pair of aggregates whose union
𝐶 is much smaller in size than their current parent 𝑃 , and let
𝑘 be the number of children of 𝑃 that are subsets of 𝐶. Then,
our first modification leads to (𝑘−1)⋅𝑜𝑢𝑡𝑃−𝑘⋅𝑜𝑢𝑡𝐶 ≈ (𝑘−1)⋅
𝑜𝑢𝑡𝑃 fewer hash operations by adding the new aggregate 𝐶 to
the tree. This is because 𝐶’s memory requirements are small
because of its smaller size, and also 𝑜𝑢𝑡𝐶 ≪ 𝑜𝑢𝑡𝑃 . Thus,
generating 𝐶 from 𝑃 requires 𝑜𝑢𝑡𝑃 hash computations, and
then generating 𝐴,𝐵 and the other children from 𝐶 incurs
an additional 𝑘 ⋅ 𝑜𝑢𝑡𝐶 hash operations, while generating all
the children directly from 𝑃 requires 𝑘 ⋅ 𝑜𝑢𝑡𝑃 operations. The
second modification considers the opposite situation when the
size of an aggregate 𝐴 is close to the size of its parent 𝑃 in
the tree – in this case, the extra cost of generating 𝐴 from
𝑃 does not offset the cost reduction when 𝐴’s children are
generated from 𝐴 instead of 𝑃 . Thus, it is more beneficial in
this case to delete 𝐴 from the tree and compute 𝐴’s children
directly from 𝑃 .

Note that, in the worst case, we may need to consider
a quadratic (in the number of input aggregates) number of
local modifications in every iteration. To compute the optimal
allocation of the available memory to the nodes of each mod-
ified tree, our heuristic invokes procedure AllocateMemory.

Algorithm 1 Greedy heuristic for finding aggregate tree.
Greedy(𝔸)

1: 𝑇𝑏𝑒𝑠𝑡 is initialized to the aggregate tree in which all 𝐴𝑖 ∈ 𝔸 are
children of the root node.

2: while 𝑇𝑏𝑒𝑠𝑡 cost improves by at least 𝜖 do
3: 𝑇𝑐𝑢𝑟 ← 𝑇𝑏𝑒𝑠𝑡;
4: for all pairs of sibling aggregates 𝐴,𝐵 in 𝑇𝑐𝑢𝑟 do
5: Let aggregate 𝐶 = 𝐴 ∪𝐵;
6: Let 𝑃 be the parent of 𝐴,𝐵 in 𝑇𝑐𝑢𝑟;
7: Let 𝑋 denote the set of 𝑃 ’s children that are subsets of 𝐶;
8: Let 𝑇 be the tree derived from 𝑇𝑐𝑢𝑟 by (1) adding 𝐶 as 𝑃 ’s

child, and (2) making all the nodes in 𝑋 as the children of
𝐶;

9: 𝕄 ← AllocateMemory(𝑇 , 𝑀);
10: Let 𝑐𝑜𝑠𝑡(𝑇,𝕄) be the cost of 𝑇 with allocation 𝕄;
11: if 𝑐𝑜𝑠𝑡(𝑇,𝕄) < 𝑐𝑜𝑠𝑡(𝑇𝑏𝑒𝑠𝑡,𝕄𝑏𝑒𝑠𝑡) then
12: 𝑇𝑏𝑒𝑠𝑡 ← 𝑇 , 𝕄𝑏𝑒𝑠𝑡 ← 𝕄;
13: end if
14: end for
15: for all aggregates 𝐴 ∕∈ 𝔸 in 𝑇𝑐𝑢𝑟 do
16: Let 𝑃 be the parent of 𝐴 in 𝑇𝑐𝑢𝑟;
17: Let 𝑇 be the tree derived from 𝑇𝑐𝑢𝑟 by deleting 𝐴, and

making 𝐴’s children the children of 𝑃 ;
18: 𝕄 ← AllocateMemory(𝑇 , 𝑀);
19: Let 𝑐𝑜𝑠𝑡(𝑇,𝕄) be the cost of 𝑇 with allocation 𝕄;
20: if 𝑐𝑜𝑠𝑡(𝑇,𝕄) < 𝑐𝑜𝑠𝑡(𝑇𝑏𝑒𝑠𝑡,𝕄𝑏𝑒𝑠𝑡) then
21: 𝑇𝑏𝑒𝑠𝑡 ← 𝑇 , 𝕄𝑏𝑒𝑠𝑡 ← 𝕄;
22: end if
23: end for
24: end while
25: return 𝑇𝑏𝑒𝑠𝑡;

The next two sections describe in more detail our memory
allocation algorithms for Zipf-like and Uniform distribution
of the tuple values, respectively.

VI. SPACE ALLOCATION FOR ZIPF-LIKE DISTRIBUTIONS

Several empirical studies have shown the distribution of
IP addresses and port numbers in Internet traffic to be Zipf-
like [4]. Under a Zipf-like distribution with parameter 𝛼,
the 𝑘𝑡ℎ ranked tuple is expected to appear 1

𝑘𝛼 times the
occurrence of the most commonly appearing tuple. (An 𝛼
value of 0 reduces this distribution to the Uniform distribution
in which every tuple is equally likely.) We studied the NetFlow
record traces for two backbone router nodes from the Abilene
observatory [1], and found that many of the group-by attributes
do indeed follow Zipf-like distributions. In particular, the Zipf
parameters for {srcIP}, {srcIP, dstIP} and {srcIP, dstIP,
srcPort, dstPort} were observed to be 0.85, 0.67 and 0.48
respectively.

Fig. 2. Plot of record frequencies illustrating a Zipf-like distribution.

As the curves in Figure 2 indicate, the value of 𝛼 depends

on the set of group-by attributes under question. For instance,
there are some attributes (such as ToS) whose occurrence
is more uniform, and hence has an 𝛼 close to zero. The
value of 𝛼 may also vary as the number of attributes in
the set increases. In particular, we observed that 𝛼 for
{srcIP, dstIP, srcPort, dstPort} is considerably smaller
than the 𝛼 for {srcIP} (see Figure 2). In some cases when the
number of attributes is large, we observed that the distribution
is very close to Uniform (i.e., a Zipf parameter of 0). As a
result, in practice, one can encounter a set of queries all of
which follow the Uniform distribution. Hence, we also present
allocation algorithms for such a case in Section VII.

A. Eviction Rates

We now show how to determine 𝑓𝑖, i.e., the probability
of a tuple getting evicted out of node 𝑁𝑖. In the following
lemma, we assume that perfect LFU is used to choose the
tuple that is evicted. There are two reasons for doing so: it is
considerably easier to analyze perfect LFU for Zipf and more
importantly, the results in [4] as well as our experiments show
that, in practice, the performance of LRU closely matches that
of perfect LFU in terms of cache hits/misses.

Lemma 6.1: Assuming perfect LFU, if the input distribu-
tion at a node 𝑁𝑖 is Zipf-like with parameter 𝛼𝑖, then the
fraction of tuples that are pushed out from 𝑁𝑖 during an epoch
is approximately 1− (𝑏𝑖

𝑔𝑖
)1−𝛼𝑖 for 0 ≤ 𝛼𝑖 < 1, and 1− log(𝑏𝑖)

log(𝑔𝑖)
if 𝛼𝑖 = 1.

Figure 3 compares the formula from Lemma 6.1 with the
actual evictions observed in practice when LRU is used. As
the plots indicate, the analytical model is reasonably accurate
for modeling the actual eviction rates.

 0

 100000

 200000

 300000

 400000

 500000

 0 50000 100000 150000 200000 250000 300000

N
um

be
r

of
 e

vi
ct

io
ns

Amount of available memory

Analytical (srcIP, dstIP, srcPort, dstPort)
Empirical (srcIP, dstIP, srcPort, dstPort)

Analytical (srcIP, dstIP)
Empirical (srcIP, dstIP)

Fig. 3. Plot shows the analytical and empirically-observed eviction rates
(using LRU) as the amount of available memory is varied.

Using Lemma 6.1 and the fact that the minimum value of
𝑜𝑢𝑡𝑖 occurs at 𝑏𝑖 = 𝑔𝑖, it is easy to show that for a given 𝑔𝑖
and 𝑜𝑢𝑡𝑝𝑖

, 𝑜𝑢𝑡𝑖 is a decreasing function of 𝑏𝑖 over the range
[0, 𝑔𝑖]. It follows that the cost of 𝑇 is a decreasing function of
the available memory. This is because, the extra memory can
be given to any node 𝑁𝑖 in the tree, and as discussed above,
this will result in a smaller 𝑜𝑢𝑡𝑖. Intuitively, this implies that
the input to the children of 𝑁𝑖 reduces resulting in a lower
cost for 𝑇𝑖. This argument shows that there is at least one
possible memory allocation that reduces the cost, and hence
the best allocation will also result in a lower cost.

Our objective is to allocate memory to the nodes of an
aggregate tree 𝑇 such that the cost 𝐶(𝑇) is minimized subject
to
∑

𝑁𝑖∈𝑇 𝑏𝑖𝑠𝑖 ≤𝑀 . For the sake of brevity, we refer to 𝐶 as

the cost of the memory allocation in the rest of this section.
Recall that 𝑜𝑢𝑡𝑖ℎ𝑖 corresponds to the cost incurred due to
hashing at the children of 𝑁𝑖 and does not include the cost
incurred at 𝑁𝑖. Henceforth, we refer to 𝑜𝑢𝑡𝑖ℎ𝑖 as the cost
contributed by node 𝑁𝑖 since the allocation at 𝑁𝑖 determines
the value of 𝑜𝑢𝑡𝑖.

We also define two specific instantiations of 𝐶, which
correspond to lower and upper bounds on the value of 𝐶.

𝐶𝑚𝑖𝑛 =
∑

𝑖

𝑔𝑖ℎ𝑖, 𝐶𝑚𝑎𝑥 =
∑

𝑖

𝑛𝑅ℎ𝑖 (3)

The first relation follows from our earlier observation that
𝑜𝑢𝑡𝑖 ≥ 𝑔𝑖. The second relation follows from the fact 𝑜𝑢𝑡𝑖 ≤
𝑛𝑅, since 𝑛𝑅 is the total number of tuples.
𝐶𝑖

𝑚𝑖𝑛 and 𝐶𝑖
𝑚𝑎𝑥 are defined analogously and correspond to

the minimum and maximum costs that can be contributed by
the subtree rooted at 𝑁𝑖.

𝐶𝑖
𝑚𝑖𝑛 =

∑
𝑁𝑗∈𝑇𝑖

𝑔𝑗ℎ𝑗 , 𝐶𝑖
𝑚𝑎𝑥 =

∑
𝑁𝑗∈𝑇𝑖

𝑛𝑅ℎ𝑗

B. Algorithm Overview
In this section, we show how to distribute the available

memory among the various nodes such that the total cost
is minimized. In order to do this, we present a dynamic
programming algorithm that solves the inverse problem: given
an input size 𝑛, what is the minimum amount of memory
needed to achieve a target cost of 𝐶.

The basic idea is to compute the optimal memory allocation
in each subtree for every possible pair of 𝑛 and 𝐶 values,
where 𝑛 is the size of the input at the subtree and 𝐶 is the
cost contributed by that subtree. Given this information for
every possible 𝐶 at the root node, since 𝑛 is known (= 𝑛𝑅),
we can perform a simple binary search in order to identify the
minimum cost corresponding to a total memory allocation of
𝑀 . (Note that binary search is applicable here because the cost
is a decreasing function of the available memory. In particular,
at every step, we can keep halving the range of 𝐶 values under
consideration by comparing 𝑀 with the memory needed at the
midpoint of the range.)

Note that the input at a node 𝑁𝑖 is at least 𝑔𝑝𝑖
, the minimum

value of 𝑜𝑢𝑡𝑝𝑖
, and at most 𝑛𝑅, the total number of tuples in

the raw stream. Similarly, the cost contributed by a subtree
𝑇𝑖 is at least 𝐶𝑖

𝑚𝑖𝑛 and at most 𝐶𝑖
𝑚𝑎𝑥. Hence, the optimal

memory allocation in 𝑇𝑖 (i.e., the subtree rooted at 𝑁𝑖) needs
to be computed for each (𝑛, 𝑐) pair, where 𝑛 ∈ [𝑔𝑝𝑖

, 𝑛𝑅] and
𝑐 ∈ [𝐶𝑖

𝑚𝑖𝑛, 𝐶
𝑖
𝑚𝑎𝑥]. Thus, at each node 𝑁𝑖, a table 𝑀(𝑁𝑖) of

size at most 𝑛𝑅 ⋅𝐶𝑚𝑎𝑥 is created, with each entry in the table
containing a vector corresponding to the optimal allocations
at the node and its children. The entries in these tables can be
computed in a bottom-up fashion as follows.
1) Let 𝑐𝑖 denote the portion of 𝑐 that is contributed by 𝑁𝑖

due to the hashes that are performed at the child nodes of 𝑁𝑖.
Since 𝑔𝑖ℎ𝑖 is the minimum value that 𝑐𝑖 can take, we iterate
over all values in the range [𝑔𝑖ℎ𝑖, 𝑐]. For each value, we can
calculate the corresponding 𝑏𝑖 by performing a binary search
over the interval [0, 𝑔𝑖]. In particular, at each step, we can
halve the interval to which 𝑏𝑖 can belong by comparing the
cost of mid-point with 𝑐𝑖.

2) Since 𝑐𝑖 equals 𝑜𝑢𝑡𝑖 ⋅ℎ𝑖, the input to the children of 𝑁𝑖 for
a given 𝑐𝑖 is simply 𝑐𝑖

ℎ𝑖
. We now need to calculate the optimal

allocation across the child subtrees of 𝑁𝑖 given that the sum
of the costs contributed by them can be at most 𝑐− 𝑐𝑖. Since
the input size to these child subtrees is known (= 𝑜𝑢𝑡𝑖), we
can iterate over all combinations that result in a sum of 𝑐− 𝑐𝑖
and choose the combination that results in the minimum total
memory used. More specifically, suppose that 𝑉1, 𝑉2, . . . , 𝑉𝑘

are the children of 𝑁𝑖. Then, we construct a table with 𝑘 rows
as follows. The 𝑖𝑡ℎ row of this table computes the minimum
amount of memory necessary to ensure that the total cost of
the 𝑖 subtrees rooted at 𝑉1, 𝑉2, . . . , 𝑉𝑖 is at most 𝑐′ for every
𝑐′ ≤ 𝑐 − 𝑐𝑖. Note that the first row can be easily filled using
the values from 𝑀(𝑉1), while the 𝑖𝑡ℎ row can be filled using
the information from (𝑖− 1)𝑡ℎ row and 𝑀(𝑉𝑖). In particular,
the latter can be filled by considering all possible splits of the
cost between the subtree rooted at 𝑉𝑖 and the subtrees rooted
at 𝑉1, . . . , 𝑉𝑖−1.

In essence, the above approach gives us a dynamic program-
ming algorithm that is polynomial in terms of the values of 𝑛𝑅

and 𝐶𝑚𝑎𝑥. Thus, we have a pseudo-polynomial algorithm for
computing the minimum memory allocation for a given cost.
We now design an FPTAS by quantizing the ranges [𝑔𝑝𝑖

, 𝑛𝑅]
and [𝐶𝑖

𝑚𝑖𝑛, 𝐶
𝑖
𝑚𝑎𝑥]. In other words, we get a polynomial time

algorithm by computing the optimal allocations at fewer values
of 𝑛 and 𝑐 depending on the approximation criteria 𝜖.

C. Detailed Description

We now describe the FPTAS (see Algorithm 2) in more
detail. We first describe how to reduce the number of table
entries to be computed and then discuss the actual table
construction.
Quantization: As mentioned earlier, we need to quantize
𝑛 and 𝐶 so that the computation of the optimal memory
allocation is performed only for a polynomial number of
values of 𝑛 and 𝐶. Though this results in a loss of optimality,
we show later that this error can be bounded in terms of the
quantization parameter.

Let 𝐶𝑖𝑗 = 𝐶𝑖
𝑚𝑖𝑛𝛽

𝑗 , and 𝑛𝑖𝑗 = 𝑔𝑝𝑖
𝛽𝑗 , where 𝛽 (> 1)

depends on the approximation criteria for the FPTAS and will
be fixed later. To see why we consider these particular values
of 𝐶𝑖𝑗 and 𝑛𝑖𝑗 , recall that 𝑔𝑝𝑖

is the smallest possible value for
the input size at node 𝑁𝑖, and 𝐶𝑖

𝑚𝑖𝑛 is the smallest possible
value of the cost of 𝑇𝑖.

Let 𝑀𝑖𝑗𝑘 denote the minimum amount of memory needed
for 𝑇𝑖 given that the size of the input to 𝑇𝑖 is 𝑛𝑖𝑗 and the cost
contribution of 𝑇𝑖 is 𝐶𝑖𝑘.4 Thus, 𝑀𝑖𝑗𝑘 corresponds to a table

of size ⌈log𝛽
𝑛𝑅

𝑔𝑝𝑖
⌉ × ⌈log𝛽

𝐶𝑖
𝑚𝑎𝑥

𝐶𝑖
𝑚𝑖𝑛

⌉ for some 𝛽 > 1. Here,
for the sake of simplicity of exposition, we assume that the
allocation of every node in 𝑇𝑖 is also stored in 𝑀𝑖𝑗𝑘. Instead
of this, we can reduce the storage requirement by storing the
allocation at 𝑁𝑖 and indexes of the tables at the children of 𝑁𝑖.
This will necessitate a minor change in the algorithm. At the

4Strictly speaking, this is incorrect because the cost of this allocation may
be greater than 𝐶𝑖𝑘 . However, we later show that the actual cost can be off
from 𝐶𝑖𝑘 by a factor of 𝛽𝑥 for some 𝑥. We refer to 𝐶𝑖𝑘 in the definition for
the sake of simplicity.

Algorithm 2 FPTAS
AllocateMemory(𝑇 , 𝑀)

1: for each node 𝑁𝑖 in the post-order traversal of 𝑇 do
2: for all 𝑛𝑖𝑗 ∈ [𝑔𝑝𝑖 , 𝑛𝑅] such that 𝑛𝑖𝑗 is 𝑔𝑝𝑖𝛽

𝑗 for some 𝑗 do
3: for all 𝐶𝑖𝑘 ∈ [𝐶𝑖

𝑚𝑖𝑛, 𝐶
𝑖
𝑚𝑎𝑥] such that 𝐶𝑖𝑘 = 𝐶𝑖

𝑚𝑖𝑛𝛽
𝑘 for

some 𝑘 do
4: 𝑚←∞;
5: for all 𝑐𝑖ℓ ∈ [𝑔𝑖ℎ𝑖, 𝐶𝑖𝑘] such that 𝑐𝑖ℓ = 𝑔𝑖ℎ𝑖𝛽

ℓ for some
ℓ do

6: Use binary search over [0, 𝑔𝑖] to compute the smallest
𝑏𝑖 such that (𝑏𝑖 + 𝑓𝑖 ⋅ 𝑛𝑖𝑗)ℎ𝑖 ≤ 𝑐𝑖ℓ;

7: 𝑏′𝑖 ←MinSumChildren
(
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁𝑖), ℓ, 𝛽

2𝐶𝑖𝑘 − 𝛽𝑐𝑖ℓ
)
;

8: 𝑚← min(𝑚, 𝑏𝑖 + 𝑏′𝑖);
9: end for

10: 𝑀𝑖𝑗𝑘 ← 𝑚;
11: end for
12: end for
13: end for
14: Use binary search in the row 𝑀0𝑗 to determine the largest 𝑀0𝑗𝑘

smaller than 𝑀 , where 𝑗 =
⌈
log𝛽

𝑛𝑅
𝑔𝑝𝑖

⌉
;

15: return 𝑀0𝑗𝑘;

MinSumChildren(𝒞, 𝑦, 𝑐𝑜𝑠𝑡)
1: Let 𝑁𝑥 be some node in 𝒞;
2: 𝑆[1]←𝑀𝑥𝑦 , 𝑗 ← 2;
3: for each 𝑁𝑖 in 𝒞 ∖ {𝑁𝑥} do
4: for each 𝑘 in

[
1, ⌈log𝛽(𝑐𝑜𝑠𝑡)⌉

]
do

5: 𝑆[𝑗, 𝑘]← min
1≤𝑘′≤𝑘

(
𝑀𝑖𝑦𝑘′ + 𝑆[𝑗 − 1, 𝑘 − 𝑘′]

)
;

6: end for
7: 𝑗 ← 𝑗 + 1;
8: end for
9: return 𝑆

[∣𝐶∣, ⌈log𝛽(𝑐𝑜𝑠𝑡)⌉];

end, a top-down pass must be performed in order to compute
the memory allocation at all the nodes.
Table Computation: We split 𝑀𝑖𝑗𝑘 into two distinct allo-
cations: the allocation at node 𝑁𝑖 and the allocations for all
the child subtrees of 𝑁𝑖. Once these two allocations can be
computed, computing 𝑀𝑖𝑗𝑘 is just a simple minimization over
the sum of these two quantities.

𝑀𝑖𝑗𝑘 = min
ℓ

(𝑃𝑖𝑗ℓ +𝑄𝑖𝑘ℓ) (4)

Here, 𝑃𝑖𝑗ℓ corresponds to the allocation at 𝑁𝑖 and 𝑄𝑖𝑘ℓ

corresponds to the allocations in the subtrees rooted at the
children of 𝑁𝑖. Before formally defining 𝑃𝑖𝑗ℓ and 𝑄𝑖𝑘ℓ, we
make one observation. The number of possible ways in which
𝐶𝑖𝑘 can be split between 𝑁𝑖 and the subtrees of its children
depends on the value of 𝐶𝑖𝑘; hence, we again need to quantize
the cost contributed by node 𝑁𝑖 in powers of 𝛽.

Let 𝑐𝑖ℓ be 𝑔𝑖ℎ𝑖𝛽
ℓ, and let 𝑃𝑖𝑗ℓ denote the best allocation at

𝑁𝑖 given that the input to 𝑁𝑖 is 𝑛𝑖𝑗 and the cost contributed
by 𝑁𝑖 is at most 𝑐𝑖ℓ. Thus, using Equation (1) and Lemma 6.1,
𝑃𝑖𝑗ℓ is given by the following.

𝑃𝑖𝑗ℓ = min

{
𝑏 ⋅ 𝑠𝑖 ∣

(
𝑏+ 𝑛𝑖𝑗(1− 𝑏1−𝛼𝑖

𝑔1−𝛼𝑖
𝑖

)

)
ℎ𝑖 ≤ 𝑐𝑖ℓ

}

Note that the expression that is being compared to 𝑐𝑖ℓ in the
above minimization is simply the cost due to the hashes at the
children of 𝑁𝑖. 𝑃𝑖𝑗ℓ can be easily computed using a binary

search on 𝑏 over the range [0, 𝑔𝑖] since the cost is a decreasing
function of 𝑏.

We now describe how to compute 𝑄𝑖𝑘ℓ using the allocations
at the child subtrees of 𝑁𝑖. We define 𝑄𝑖𝑘ℓ as follows in terms
of 𝑀𝑥ℓ𝑦𝑥

, where 𝑁𝑥 is a child of 𝑁𝑖.

𝑄𝑖𝑘ℓ = min

{∑
𝑥

𝑀𝑥ℓ𝑦𝑥 ∣ 𝑖 = 𝑝𝑥 and
∑
𝑥

𝐶𝑥𝑦𝑥 ≤ 𝛽2𝐶𝑖𝑘 − 𝛽𝑐𝑖ℓ

}

Intuitively, we select individual allocations for nodes 𝑁𝑥 such
that the following two conditions hold.
∙ 𝑛𝑥ℓ is the input size to 𝑁𝑥 when 𝑁𝑖 is allocated 𝑃𝑖𝑗ℓ. This
follows from the fact that 𝑛𝑥ℓ = 𝑔𝑝𝑥

𝛽ℓ = 𝑔𝑖𝛽
ℓ = 𝑐𝑖ℓ

ℎ𝑖
.

∙ The sum of the costs of the subtrees rooted at all the children
of 𝑁𝑖 is within some function of the target cost (𝐶𝑖𝑘 − 𝑐𝑖ℓ).
The particular choice of the function is dictated primarily by
our proof.

Note that the third subscript 𝑦𝑥 in𝑀𝑥ℓ𝑦𝑥
determines the cost

contribution made by child node 𝑁𝑥 and can vary across the
different children. Hence, there is a need to further subscript
it with the node index as shown. As we shall see later, the
additional 𝛽 factors in the definition of 𝑄𝑖𝑘ℓ are needed to
ensure that the allocation 𝑀𝑖𝑗𝑘 is at most the optimal alloca-
tion for a cost of 𝐶𝑖𝑘 and an input size of 𝑛𝑖𝑗 . This simplifies
the correctness proof considerably; however, it implies that the
actual cost of the allocation 𝑀𝑖𝑗𝑘 could be higher than 𝐶𝑖𝑘.
Later, we also give an upper bound on the cost of 𝑀𝑖𝑗𝑘 in
terms of 𝐶𝑖𝑘 and 𝛽.

It turns out that 𝑄𝑖𝑘ℓ can be determined using a dynamic
programming approach that is similar to the one used for
solving the traditional Knapsack problem [8]. In particular,
we create a table 𝑆 of size 𝐷𝑖 × ⌈log𝛽(𝛽

2𝐶𝑖𝑘 − 𝛽𝑐𝑖ℓ))⌉,
where 𝐷𝑖 is the number of children of 𝑁𝑖. As discussed in
Section VI-B, each term 𝑆(𝑑, 𝑐) in the table corresponds to the
minimum memory allocation needed to ensure that the first 𝑑
children of 𝑁𝑖 contribute a cost of at most 𝑐. 𝑆(𝑑, 𝑐) can be
easily defined in terms of 𝑆(𝑑 − 1, 𝑐′) (𝑐′ ≤ 𝑐) and 𝑀𝑥ℓ𝑦𝑥

where 𝑁𝑥 is the 𝑑𝑡ℎ child of 𝑁𝑖. In particular, we can iterate
over all the log𝛽(𝐶

𝑥
𝑚𝑎𝑥) values in the row 𝑀𝑥𝑦; for each of

these costs, we can use the row 𝑆(𝑑 − 1) to determine the
minimum total memory necessary for the first 𝑑− 1 children.

Now, from the definition of 𝑃𝑖𝑗ℓ and 𝑄𝑖𝑘ℓ, it follows that
if 𝑃𝑖𝑗ℓ and 𝑄𝑖𝑘ℓ are calculated in an optimal fashion, then the
cost for the allocation given by 𝑀𝑖𝑗𝑘 is at most 𝛽2𝐶𝑖𝑘. Later,
in Section VI-D, we give a more exact bound on this cost
by taking into account the fact that the calculation for 𝑄𝑖𝑘ℓ

depends on values of 𝑀𝑥ℓ𝑦𝑥
, which are also approximations.

Finally, once all the 𝑀𝑖𝑗𝑘’s are calculated, the minimum-
cost allocation can be determined by identifying the entry
in the row 𝑀0𝑗 such that the total memory allocation is at
most 𝑀 . (Here, 𝑗 corresponds to the input size of 𝑛𝑅.) Since
the cost is a decreasing function of the memory, it follows
that the memory needed also decreases as the target cost
increases. In other words, 𝑀0𝑗𝑘 ≤ 𝑀0𝑗𝑘′ for all 𝑘′ > 𝑘.
Hence, the minimum-cost allocation corresponding to a total
memory allocation of at most 𝑀 can be computed using a
binary search over the row 𝑀0𝑗 .
D. Analysis

The following theorems analyze the running time of Al-
gorithm 2 and prove the necessary approximation bounds to

show that it is an FPTAS.
Theorem 1: The asymptotic time complexity of Algo-

rithm 2 is 𝑂(log5𝛽(𝑛𝑅)∣𝑇 ∣Δ).
Theorem 2: Algorithm 2 gives a 𝛽2𝐿+1 approximation,

where 𝐿 is the number of levels in the tree.
It easily follows from Theorems 1 and 2 that Algorithm 2

is an FPTAS for minimizing the cost of the tree subject to
a constraint on the total available memory. In particular, we
obtain a (1+ 𝜖)-approximation by choosing 𝛽 to be 1+ 𝜖

2𝐿+1 .
Then, by Theorem 2, the approximation factor of Algorithm 2
is (1 + 𝜖

2𝐿+1)
2𝐿+1, which is approximately (1 + 𝜖). By

Theorem 1, the running time of Algorithm 2 is given by

𝑂

(
log5(𝑛𝑅)

log5(𝛽)
∣𝑇 ∣Δ

)
= 𝑂

((
𝐿

𝜖

)5

log5(𝑛𝑅)∣𝑇 ∣Δ
)

(This follows from the relation log(1 + 𝑥) ≈ 𝑥 for small 𝑥.)
Thus, Algorithm 2 has a running time that is polynomial in
the size of the problem as well as in 1

𝜖 . Hence it is an FPTAS
for the problem.

VII. SPACE ALLOCATION FOR UNIFORM DISTRIBUTION
In this section, we focus on the scenario in which the

input distribution at every node is Uniform. We prove a
certain property about optimal memory allocations, and then
show how to exploit this property to obtain a more efficient
algorithm. Before proceeding, we first compute the eviction
rate under a Uniform distribution.

Lemma 7.1: If the input distribution at 𝑁𝑖 is Uniform, then
the fraction of queries pushed out from 𝑁𝑖 during an epoch
is 1− 𝑏𝑖

𝑔𝑖
.

Unlike Lemma 6.1, Lemma 7.1 is independent of the policy
(LRU or LFU) that is used to choose the tuple to be pushed
down. Lemma 7.1 implies the following, where 𝑛𝑖 denotes the
size of the input at node 𝑁𝑖, and 𝑚𝑖 is the memory allocated
at 𝑁𝑖.

𝑜𝑢𝑡𝑖 =
𝑚𝑖

𝑠𝑖
+ 𝑛𝑖(1− 𝑚𝑖

𝑔𝑖𝑠𝑖
) (5)

(This follows from the fact that 𝑏𝑖 =
𝑚𝑖

𝑠𝑖
.)

We now prove that one optimal memory allocation is the all-
or-nothing policy, under which every node (except one) gets
an allocation equal to its maximum requirement or nothing.

Theorem 3: Given an aggregate tree 𝑇 in which the input
distribution for every aggregate is Uniform, there exists an
optimal memory allocation in which 𝑚𝑖 = 0 or 𝑚𝑖 = 𝑔𝑖𝑠𝑖
holds for all nodes except (at most) one node.

Given Theorem 3, we can modify Algorithm 1 as follows.
Note that nodes that get an allocation of 0 are, in fact, not
aggregating anything and can be safely removed from the
aggregate tree. Thus, we need to consider an aggregate as a
candidate for addition during the steps 4–14 of Algorithm 1
only if after including that node, we can give full allocation
to all nodes except one. Thus, while computing the cost, we
can iterate over all the possibilities in which only one node is
allocated less than its maximum requirement.

VIII. PERFORMANCE STUDY
In this section, we discuss our experimental results in which

we compare our approach with the best-known approach. We
describe our experimental setup and then discuss our results.

A. Experimental Setup

We implemented a simulated NetFlow Collector (NFC),
which performs real-time aggregation on streaming NetFlow
records, and ran this collector on a PC running Ubuntu Linux
7.04 with an Intel Xeon 3.0GHz processor and 2GB of RAM.

Real-life Data Sets. All our experiments were performed on
NetFlow record traces obtained from the Abilene network,
which is an Internet2 high-performance backbone network. We
downloaded the NetFlow record traces for the Indianapolis
(IPLSng) and New York (NYCMng) backbone routers from
the Abilene observatory [1]. For IPLSng, the traces correspond
to four consecutive five-minute intervals of data from 23:20
to 23:40 on October 16, 2006, with each interval containing
approximately 400,000 records. The NYCMng trace consists
of four consecutive five-minute intervals of data from 11:20 to
11:40 on May 8, 2006, each interval containing approximately
350,000 NetFlow records.

Aggregate Queries. In our experiment, we varied the number
of queries from 20 to 78. It turns out if one query is a
subset of another, then the Zhang et al. approach needs
to be significantly modified while performing the memory
allocations. (On the other hand, Algorithm 2 can easily handle
such cases.) Hence, to avoid such scenarios, we considered
all possible queries from the set formed by pairs of group-by
attributes. Since the number of distinct attributes in a NetFlow
record is 13, the maximum number of unique queries that we
consider is

(
13
2

)
= 78.

Memory Allocation Strategies. We compared the following
two memory allocation strategies with our greedy tree con-
struction algorithm (Algorithm 1). We used Algorithm 1 for
the approach of [14] as well, because their tree construction
algorithm does not scale to the number of queries for which
we ran our experiments.
1) Supernode with Linear Combination (SLC). Supernode
with Linear Combination yielded the best results in [14];
hence, we use it as a benchmark for our experiments. As
mentioned in Section III, SLC uses a hash table in which each
bucket has size 1, i.e., every collision results in an eviction.
Under this model, they show that allocating in proportion to√
𝑔𝑖𝑠𝑖 is optimal if the height of the aggregate tree is two.

For taller trees, they combine each subtree rooted at level 2
into a single supernode 𝑋 , and define 𝑔𝑋 to be the sum of
𝑔𝑖’s of all the nodes in the subtree. Once each supernode is
allocated memory, the memory allocation algorithm is then
recursively applied to the nodes within the supernode.

In [14], the end-of-epoch cost is not accounted for in
the cost optimization function; instead [14] uses a seperate
peak load constraint to bound the end-of-epoch cost. In our
experiments, we tuned the peak load constraint each time by
empirically finding the best value that yielded the smallest
total cost and used this value when running this scheme.
2)Fully Polynomial-Time Approximation Scheme (FPTAS).
We implemented the hashing model (with LRU) as described
in Section III-C and Algorithm 2 as the memory allocation
strategy. We used 𝜖 = 0.05 in our experiments; this yielded
excellent results and took only a few minutes to run.

Performance Metric.
As mentioned earlier, aggregrate query processing costs

mainly comprise the CPU cycles for hashing, traversing chains
and updating record entries, etc. These are proportional to the
number of hash operations. Hence, we use the total number of
hash operations as the performance metric, when comparing
the performance of FPTAS and SLC.

We remark that both the approaches took only a few minutes
to produce query plans. We believe that this is sufficient given
that plans will typically need to be generated infrequently; for
instance, when there is a change in the query workload or a
considerable change in the stream data distribution.

B. Results
Comparison of FPTAS with SLC. Figure 4(a) compares
the performance of FPTAS and SLC; in this experiment, we
used all the 78 possible pairs of group-by attributes in this
experiment over the 20 minutes of data from the IPLSng.
The plot shows the number of hash operations required by
the two approaches as the amount of memory available for
intermediate aggregates is varied. (In our experiments, we
measure the amount of available memory in terms of number
of hash buckets.) As the available memory increases beyond
1M, our algorithm continues to generate the same query
plan. This is because the hash tables of all the intermediate
aggregate are allocated their full requirement, i.e., 𝑏 = 𝑔,
and the addition of any new intermediate aggregate in the
aggregate tree results in a higher cost.
Breakdown of costs. The primary focus of the SLC approach
was on optimizing the intra-epoch processing cost, and it
ignores the cost incurred at the end of an epoch. Thus, in cases
in which the end-of-epoch cost dominates the overall cost,
their solution does not give good performance. Figures 4(b)
and 4(c) show the breakdown of the processing costs using
SLC and FPTAS, respectively. For SLC, it is easy to see that
although the cost during epoch decreases inversely with the
memory allocation, the end-of-epoch cost fluctuates. Because
of this, the overall cost of the query plans generated with
SLC may actually increase as the amount of available memory
increases. In fact, we do observe this around 3.2M of available
memory (see Figure 4(b)). On the other hand, in our approach,
since we account for end-of-epoch cost as well, the overall cost
always reduces with increasing memory.
Additional benchmarking. In the previous experiment, we
used a single query set for simplicity of exposition. We
now present the results of repeating these tests several times
using various randomly-generated query sets and memory
constraints. We present the results for the NYCMng traces,
which also indicates that our results are consistent across
various datasets (which are both geographically and temporally
separated). Figure 5 shows the results of this experiment. The
three curves plotted correspond to three different limits on
the amount of available memory (in terms of hash buckets):
{50K, 500K, 5000K}. We varied the number of queries from
20 to 78. Each data-point represents the average processing of
3 different query sets of the specified size. As the graphs show,
our approach consistently outperforms SLC. In particular, our
approach results in a speedup of 50% as compared to SLC

16e+07

8e+07

4e+07
320000080000020000050000

N
um

be
r

of
 h

as
h

op
er

at
io

ns

Memory

FPTAS vs. SLC

SLC
FPTAS

(a)

8e+07

4e+07

2e+07

1e+07

320000080000020000050000

N
um

be
r

of
 h

as
h

op
er

at
io

ns

Memory

Breakdown of costs for SLC

During−Epoch Cost
End−of−Epoch Cost

Total Cost

(b)

8e+07

4e+07

2e+07

1e+07

320000080000020000050000

N
um

be
r

of
 h

as
h

op
er

at
io

ns

Memory

Breakdown of costs for FPTAS

During−Epoch Cost
End−of−Epoch Cost

Total Cost

(c)

Fig. 4. Inset (a) compares the number of hash operations with our approach versus SLC. Insets (b) and (c) show the breakdown of processing
costs for SLC, and our approach, respectively.

when the amount of memory available is 5000K. (Here, by
speedup we mean the percentage reduction in the number of
hash operations performed in our approach compared to the
approach of [14].)

60

50

40

30

20

10

0
80604020

Pe
rc

en
t S

pe
ed

up

Number of Queries

Memory = 50K
Memory = 500K

Memory = 5000K

Fig. 5. Comparison of speedup for various query set sizes.

IX. CONCLUSIONS
In this paper, we re-investigated the problem of efficiently

computing multiple aggregation queries over a data stream. We
have made several important contributions to improve the ex-
ecution and generation of query plans containing intermediate
aggregates. We studied a new hashing model, which has lower
eviction rates than the hash model considered in prior work,
and which allows us to provide accurate analytical estimates
for the number of hash operations. Based on these estimates,
we presented a comprehensive query execution cost model
and an efficient greedy heuristic for constructing good low-
cost query plans as well as provably near-optimal and optimal
algorithms for allocating the available memory to aggregates
in the query plan when the input data distribution is Zipf-
like and Uniform, respectively. Finally, we have also presented
a detailed performance study with real-life IP flow data
sets, which show that our multiple aggregates computation
techniques consistently outperform the best-known approach
of Zhang et al. [14].

REFERENCES

[1] Abilene Observatory Data Collections. http://abilene.
internet2.edu/observatory/data-collections.html.

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ra-
makrishnan, and S. Sarawagi. On the computation of multidimensional
aggregates. In VLDB, 1996.

[3] A. Arasu and J. Widom. Resource sharing in continuous sliding-window
aggregates. In VLDB, 2004.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In INFOCOM,
pages 126–134, 1999.

[5] M. Charikar, S. Chaudhari, R. Motwani, and V. Narasayya. Towards
estimation error guarantees for distinct values. In PODS, 2000.

[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable
continuous query system for internet databases. In SIGMOD, 2000.

[7] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope:
A stream database for network applications. In SIGMOD, 2003.

[8] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.

[9] G. Gonnet. Expected length of the longest probe sequence in hash code
searching. J. ACM, 28(2):289–304, 1981.

[10] V. Harinarayan and J. Ullman A. Rajaraman. Implementing data cubes
efficiently. In SIGMOD, 1996.

[11] R. Huebsch, M. Garofalakis, J. Hellerstein, and I. Stoica. Sharing
aggregate computation for distributed queries. In ACM SIGMOD, pages
485–496, 2007.

[12] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for
streamed aggregation. In ACM SIGMOD, pages 623–634, 2006.

[13] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over data streams. In SIGMOD, 2002.

[14] R. Zhang, N. Koudas, B. Ooi, and D. Srivastava. Multiple Aggregations
over Data Streams. In SIGMOD, 2005.

Appendix
Proof of Theorem 1

Proof: (Theorem 1) It is easy to see that the run-
ning time of Algorithm 2 is determined by the complex-
ity of MinSumChildren and the number of times it
is executed. It is easy to see that Line 8 is executed
𝑂(∣𝑇 ∣ log2𝛽(𝐶𝑚𝑎𝑥) log𝛽(𝑛𝑅)) times and the complexity of the
procedure MinSumChildren is 𝑂(Δ log2𝛽(𝐶𝑚𝑎𝑥)), where
Δ is the maximum degree of a node in 𝑇 . Hence, by Equa-
tion (3), the running time of Algorithm 2 is 𝑂(log5𝛽(𝑛𝑅)∣𝑇 ∣Δ).

Proof of Theorem 2
We now present a series of Lemmas, which show that

Algorithm 2 is a 𝛽2𝐿+1 approximation, where 𝐿 is the height
of 𝑇 .

Note that 𝑜𝑢𝑡𝑖 is a linear, increasing function in the size
of the input at 𝑁𝑖 (see Equation 1). This implies that for
a given memory allocation, if the input size increases by a
factor 𝑥, then the cost increases by the same factor as well.
Therefore, the minimum cost for the increased input size will
also increase by at most the same factor. This is formally stated
in the following lemma.

Lemma 9.1: The minimum cost of any subtree 𝑇𝑖 for an
input size of 𝛽𝑜𝑢𝑡𝑝𝑖

(𝛽 > 1) is at most 𝛽 times the minimum
cost for an input size of 𝑜𝑢𝑡𝑝𝑖

.

Proof: We show the following two things at 𝑁𝑖, the root
of 𝑇𝑖: (a) the cost contributed by 𝑁𝑖 increases by at most 𝛽
(b) the input size to each of its children also increases by at
most 𝛽. Inductively, it follows that the cost at each node of
𝑇𝑖 and hence the total cost of 𝑇𝑖 increases by a factor of at
most 𝛽. Since the size of the input to 𝑁𝑖’s children is given
by 𝑜𝑢𝑡𝑖 and the cost contributed by 𝑁𝑖 is simply 𝑜𝑢𝑡𝑖ℎ𝑖, it
suffices to show that 𝑜𝑢𝑡𝑖 changes by a factor of at most 𝛽.
Now, by Equation (1), 𝑜𝑢𝑡𝑖 is (𝑏𝑖 + 𝑓𝑖 ⋅ 𝑜𝑢𝑡𝑝𝑖

). The Lemma
follows because 𝛽 ⋅ 𝑜𝑢𝑡𝑝𝑖

⋅ 𝑓𝑖 + 𝑏𝑖 < 𝛽(𝑜𝑢𝑡𝑝𝑖
⋅ 𝑓𝑖 + 𝑏𝑖) for any

𝛽 > 1.
The following two lemmas are necessary for comparing the

allocation given by Algorithm 2 with an optimal allocation.
Lemma 9.2: The memory allocation by Algorithm 2 for a

cost of 𝛽𝐶𝑖𝑘 with an input size of 𝛽𝑛𝑖𝑗 is at most the memory
allocation for a cost of 𝐶𝑖𝑘 with an input size of 𝑛𝑖𝑗 .

Proof: The required result follows by showing that the
memory allocation in 𝑇𝑖 for input size 𝑛𝑖𝑗 and cost 𝐶𝑖𝑘 is
also a valid allocation for input size 𝛽𝑛𝑖𝑗 and cost 𝛽𝐶𝑖𝑘. This
follows from Lemma 9.1 which states that the cost of that
allocation for an input size of 𝛽𝑛𝑖𝑗 is at most 𝛽𝐶𝑖𝑘. Since
this is only one possible allocation, there may exist better
allocations for 𝛽𝐶𝑖𝑘 and 𝛽𝑛𝑖𝑗 .

Lemma 9.3: Let 𝑀𝑜
𝑖𝑗𝑘 denote the optimal memory alloca-

tion in 𝑇𝑖 for input size 𝑛𝑖𝑗 and cost 𝐶𝑖𝑘. Then, 𝑀𝑖𝑗𝑘 < 𝑀
𝑜
𝑖𝑗𝑘.

Proof: We prove this by induction. Suppose 𝑀𝑜
𝑖𝑗𝑘 corre-

sponds to an allocation of 𝑃 𝑜 and 𝑄𝑜 at 𝑁𝑖 and 𝑁𝑖’s children,
respectively. Then, we show that there exists a 𝑐𝑖ℓ such that
the allocation 𝑃𝑖𝑗ℓ + 𝑄𝑖𝑘ℓ is smaller than 𝑀𝑜

𝑖𝑗𝑘. Since 𝑀𝑖𝑗𝑘

corresponds to the minimum such sum, the result follows.
Let 𝑐𝑜 denote the cost contributed by 𝑁𝑖 corresponding to

the allocation of 𝑃 𝑜. Then the input size at the children of
𝑁𝑖, denoted by 𝑛𝑜, is 𝑐𝑜

ℎ𝑖
. Let 𝑐𝑖ℓ be such that 𝑐𝑖ℓ

𝛽 < 𝑐𝑜 ≤ 𝑐𝑖ℓ.
Since 𝑃𝑖𝑗ℓ corresponds to a cost of 𝑐𝑖ℓ, 𝑃𝑖𝑗ℓ ≤ 𝑃 𝑜. This also
proves the base case, in which 𝑁𝑖 has no children that need
to be allocated.

Now, the allocation of 𝑄𝑜 corresponds to a cost of 𝐶𝑖𝑘−𝑐𝑜,
which is at most 𝐶𝑖𝑘 − 𝑐𝑖ℓ

𝛽 . In other words, the sum of the
costs contributed by 𝑇𝑥 (for all 𝑁𝑥, children of 𝑁𝑖) is at most
𝐶𝑖𝑘 − 𝑐𝑖ℓ

𝛽 . Let 𝑐𝑜𝑥 denote the cost of 𝑇𝑥. Then, we have∑
𝑥

𝑐𝑜𝑥 ≤ 𝐶𝑖𝑘 − 𝑐𝑖ℓ
𝛽
.

Note that, for every 𝑥, there exists a 𝑦𝑥 such that 𝐶𝑥𝑦𝑥
≤

𝑐𝑜𝑥 < 𝛽𝐶𝑥𝑦𝑥
. Now,

∑
𝑥 𝛽

2𝐶𝑥𝑦𝑥
≤ 𝛽2(

∑
𝑥 𝑐

𝑜
𝑥), which is at

most 𝛽2𝐶𝑖𝑘 − 𝛽𝑐𝑖ℓ. Thus, the 𝛽2𝐶𝑥𝑦𝑥
’s form a valid split of

costs for 𝑄𝑖𝑘ℓ. Also, we have 𝑛𝑥ℓ = 𝑔𝑝𝑥
𝛽ℓ = 𝑔𝑖𝛽

ℓ = 𝑐𝑖ℓ
ℎ𝑖

.
Since 𝑐𝑖ℓ < 𝛽𝑐𝑜, we have 𝑛𝑥ℓ < 𝛽𝑛

𝑜. Hence, by Lemma 9.2,
the memory allocation by Algorithm 2 in 𝑇𝑥 for 𝛽2𝐶𝑥𝑦𝑥

with
input 𝑛𝑥𝑦 is at most the memory allocation for 𝛽𝐶𝑥𝑦𝑥

with
input size of 𝑛𝑜. By induction, this is at most the optimal
memory allocation for a cost of 𝛽𝐶𝑥𝑦𝑥

and hence, at most the
optimal memory allocation for 𝑐𝑜𝑥 (which is < 𝛽𝐶𝑥𝑦𝑥

).
Thus, it is easy to see that choosing the 𝛽2𝐶𝑥𝑦𝑥

’s as the
cost split for 𝑄𝑖𝑘ℓ makes 𝑄𝑖𝑘ℓ smaller than 𝑄𝑜. Since 𝑄𝑖𝑘ℓ

is the minimum allocation considering all possible cost splits,
we have 𝑄𝑖𝑘ℓ ≤ 𝑄𝑜. Thus, the required result follows.

The following lemma gives an upper bound on the actual
cost of an allocation done by Algorithm 2.

Lemma 9.4: The cost of the allocation 𝑀𝑖𝑗𝑘 chosen by
Algorithm 2 is at most 𝛽2𝑑𝐶𝑖𝑘, where 𝑑 is the height of 𝑁𝑖.

Proof: We again use induction to show this. Let 𝑃𝑖𝑗𝑙 and
𝑄𝑖𝑘𝑙 be the allocations given by Algorithm 2 for 𝑁𝑖 and its
children. And let𝑀𝑥ℓ𝑦𝑥

be the allocation chosen for 𝑇𝑥, where
𝑁𝑥 is a child of 𝑁𝑖. By induction, the cost of 𝑀𝑥ℓ𝑦𝑥

is at most 𝛽2(𝑑−1)𝐶𝑥𝑦𝑥
. This along with the fact that∑

𝑥 𝐶𝑥𝑦𝑥
≤ 𝛽2𝐶𝑖𝑘 − 𝛽𝑐𝑖ℓ implies that the cost of 𝑄𝑖𝑘ℓ is

at most 𝛽2𝑑𝐶𝑖𝑘 − 𝛽2𝑑−1𝑐𝑖ℓ. Now, by the definition of 𝑃𝑖𝑗ℓ,
the cost of 𝑃𝑖𝑗ℓ is at most 𝑐𝑖ℓ. Hence, the cost of 𝑀𝑖𝑗𝑘 is at
most 𝑐𝑖ℓ + 𝛽2𝑑𝐶𝑖𝑘 − 𝛽2𝑑−1𝑐𝑖ℓ, which is at most 𝛽2𝑑𝐶𝑖𝑘.
Theorem 2 follows directly from Lemmas 9.3 and 9.4. The
extra 𝛽 in the approximation factor comes from the fact that
the optimal cost may not equal 𝛽𝑖𝐶𝑚𝑖𝑛 for any 𝑖. Hence, Al-
gorithm 2 can end up choosing the entry in 𝑀 corresponding
to a 𝐶0𝑘 where 𝐶0𝑘 is 𝛽 times the optimal cost.
Proof of Theorem 3

Proof: (Lemma 7.1) If a tuple is pushed down, then
it implies that the newly arrived tuple is not one of the 𝑏𝑖
tuples for which aggregation is being done at that node. Under
Uniform distribution, the probability of this event is simply
𝑔𝑖−𝑏𝑖

𝑔𝑖
, which implies the required result.
Proof: (Theorem 3) Suppose there exists an optimal

memory allocation 𝑂 for which the stated property does not
hold. Then there exist two nodes 𝑁1 and 𝑁2 such that

0 < 𝑚1 < 𝑔1𝑠1 and 0 < 𝑚2 < 𝑔2𝑠2. (6)

We now show that such an assignment can be converted into
another optimal solution in which at least one of 𝑚1 and 𝑚2

is an extreme value. It is easy to show the total cost will be
of this form:

𝑆0 = 𝑐0 − 𝑐1𝑚1 − 𝑐2𝑚2 + 𝑐3𝑚1𝑚2,

where the 𝑐𝑖’s are some non-negative constants. Intuitively, the
second and the third term arise from the cost incurred at the
subtrees of 𝑁1 and 𝑁2, respectively; while the last term arises
when one of them lies in the subtree of the other.

Let 𝑆1 denote the solution cost in which the allocations for
𝑁1 and 𝑁2 are 𝑚1 + 𝑥 and 𝑚2 − 𝑥, respectively for some
𝑥 > 0. Similarly, let 𝑆2 denote the solution cost in which the
allocations for 𝑁1 and 𝑁2 are𝑚1−𝑥 and𝑚2+𝑥 , respectively.
Note that such an 𝑥 exists because of our assumptions (refer
to (6)). Then,

𝑆1 = 𝑐0 − 𝑐1(𝑚1 + 𝑥)− 𝑐2(𝑚2 − 𝑥) + 𝑐3(𝑚1 + 𝑥)(𝑚2 − 𝑥)

𝑆2 = 𝑐0 − 𝑐1(𝑚1 − 𝑥)− 𝑐2(𝑚2 + 𝑥) + 𝑐3(𝑚1 − 𝑥)(𝑚2 + 𝑥)

Note that the average 𝑆1+𝑆2

2 is simply 𝑆0− 𝑐3𝑥2. Clearly, if
𝑐3 is non-zero, then the above relation implies that the average
of 𝑆1 and 𝑆2 is smaller than 𝑆0. This, in turn, implies that one
of 𝑆1 and 𝑆2 is smaller than 𝑆0 contradicting 𝑆0’s optimality.

If 𝑐3 is zero, then the average of 𝑆1 and 𝑆2 equals 𝑆0.
In this case, either both 𝑆1 and 𝑆2 equal 𝑆0 or one of them
is smaller than 𝑆0. The latter again leads to a contradiction.
Since 𝑥 > 0, the former is possible only if 𝑐1 = 𝑐2; in this
case, we can easily choose an 𝑥 such that (6) does not hold,
without any increase in the optimal cost. Thus, we can always
obtain an optimal solution in which (6) does not hold. This
concludes the proof.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

